Journal of
Applied Mechanics

Published Bimonthly by The American Society of Mechanical Engineers

VOLUME 69 « NUMBER 5 « SEPTEMBER 2002

569 Editorial
TECHNICAL PAPERS

570 A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
J. E. Bischoff, E. A. Arruda, and K. Grosh

580 A Surface Crack in a Graded Medium Under General Loading Conditions
S. Dag and F. Erdogan

589 Vibration and Post-buckling of In-Plane Loaded Rectangular Plates Using
a Multiterm Galerkin’s Method
S. llanko

593 The Isotropic Ellipsoidal Inclusion With a Polynomial Distribution of
Eigenstrain
M. Rahman

602 Scission and Healing in a Spinning Elastomeric Cylinder at Elevated
Temperature
A. S. Wineman and J. A. Shaw

610 Dynamic Condensation and Synthesis of Unsymmetric Structural
Systems
G. Visweswara Rao

617 Extracting Physical Parameters of Mechanical Models From Identified
State-Space Representations
M. De Angelis, H. Lus,, R. Betti, and R. W. Longman

626 Analysis of a Three-Dimensional Crack Terminating at an Interface Using
a Hypersingular Integral Equation Method
T. Y. Qin and N. A. Noda

632 Plane Thermal Stress Analysis of an Orthotropic Cylinder Subjected to an
Arbitrary, Transient, Asymmetric Temperature Distribution
K.-C. Yee and T. J. Moon

641 Constitutive Model of a Transversely Isotropic Bingham Fluid
D. N. Robinson, K. J. Kim, and J. L. White

649 The Proportional-Damping Matrix of Arbitrarily Damped Linear Mechanical
Systems
J. Angeles and S. Ostrovskaya

657 Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
L. Kogut and I. Etsion

663 Dynamic Shear Fracture at Subsonic and Transonic Speeds in a
Compressible Neo-Hookean Material Under Compressive Prestress
L. M. Brock

671 On an Elastic Circular Inhomogeneity With Imperfect Interface in
Antiplane Shear
P. Schiavone

675 Radiation Loading of a Cylindrical Source in a Fluid-Filled Cylindrical
Cavity Embedded Within a Fluid-Saturated Poroelastic Medium
S. M. Hasheminejad and H. Hosseini

684 Buckling of Laminated Composite Rectangular Plates Under Transient
Thermal Loading
K. K. Shukla and Y. Nath

(Contents continued on inside back cover )

This journal is printed on acid-free paper, which exceeds the ANSI Z39.48-
1992 specification for permanence of paper and library materials. @™
@ 85% recycied content, including 10% post-consumer fibers.




(Contents continued )

Journal of Applied Mechanics Volume 69, Number 5 SEPTEMBER 2002
BRIEF NOTES
693 Crack-Tip Field of a Supersonic Bimaterial Interface Crack

J. Wu

696 Effective Antiplane Dynamic Properties of Fiber-Reinforced Composites
X. D. Wang and S. Gan

700 Elasticity Solution for a Laminated Orthotropic Cylindrical Shell Subjected to a Localized Longitudinal Shear
Force

K. Bhaskar and N. Ganapathysaran

703 Bubble Shape in Non-Newtonian Fluids
D. De Kee, C. F. Chan Man Fong, and J. Yao

705 Dynamic Stability of a Rotor Partially Filled With a Viscous Liquid
M. Tao and W. Zhang

708 Dynamic Stability of a Flexible Spinning Cylinder Partially Filled With Liquid
M. Tao and W. Zhang

DISCUSSION

711 “On the Relationship Between the L-Integral and the Bueckner Work-Conjugate Integral,” by J. P. Shi, X. H. Liu,
and J. Li—Discussion by Y. Z. Chen and K. Y. Lee

712 “A Critical Reexamination of Classical Metal Plasticity,” by C. D. Wilson—Discussion by C. J. Lissenden

ERRATUM

713 “On Some Issues in Shakedown Analysis,” by G. Maier

ANNOUNCEMENTS AND SPECIAL NOTES

714 Information for Authors

715 Preparing and Submitting a Manuscript for Journal Production and Publication
716 Preparation of Graphics for ASME Journal Production and Publication



Journal of
Applied
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This editorial gives me an opportunity to introduce myself as the new editor afdhmnal of Applied Mechanicd succeed Lewis
Wheeler who served almost ten years at the head of the Journal. On its behalf, | wish to extend thanks to him for his long service during
which the Journal of Applied Mechanichas stayed at the forefront of its area and maintained its position as one of the leading
periodicals in the fields of engineering.

During Professor Wheeler’s term of service, important innovations were introduced. These changes will make it even more attractive
for the applied mechanics community to publish its best work in the Journal. The length limit for papers has been increased to 9 journal
pages, approximately 9,000 words. This increase from the previous level of 6 pages became effective some time ago and is applicable
to any paper now submitted to the Journal. The board of Associate Editors and the Division of Applied Mechanics is convinced that this
increase in the length limit will enable the journal to publish papers in a more effective format and to allow it to attract a greater
diversity of excellent papers in areas where it was previously difficult to fit within the Journal’s length constraints. Not least, the new
length limit will enhance the Journal’s ability to attract the best papers in the fields of applied mechanics and therefore will help
maintain its leading position.

The Journal now publishes bimonthly and the time between the submission of a paper and its publication has improved dramatically.
The Journal can now achieve publication of a paper in as little as 10 months after it has been first received at the editorial office, as can
be confirmed by the submission dates in the May, 2002 issue. The bimonthly format also results in the Journal appearing on library
shelves and on desks more frequently, commanding the attention of those working in the fields of applied mechanics more often each
year. This publishing schedule makes flwairnal of Applied Mechanica more compelling habit on the part of its readers and a better
vehicle for the publication of the best work in our field.

Another innovation that has been introduced is that special collections of papers will be assembled by editorial teams composed of
Associate and Guest editors. The first of these on the nanomechanics of surfaces and interfaces, edited by Demitris Kouris and Huajian
Gao, has already appeared in the July 2002 issue. These special collections will focus the attention of Journal readers on topical issues
in applied mechanics and will be used to highlight important trends and developments in the fields relevadotortaeof Applied
Mechanics

The typesetting, graphics and printing of the Journal have been improved. This has given the papers in the Journal a more profes-
sional appearance, so that authors can be better satisfied about how their work is being presented to the world. These benefits are not
simply cosmetic; as a consequence of the changes, authors are now able to present information and data more clearly and with greater
effectiveness in experimental papers and in the form of computer-generated graphics.

These improvements will encourage authors to continue to send their best workJoutin@l of Applied Mechanicdn my period
of being editor, | will endeavor to ensure that the Journal capitalizes on these changes and maintains its position as one of the leading
periodicals in the field of applied mechanics. With advice from authors, the board of Associate Editors and the leadership and
membership of the ASME Division of Applied Mechanics, | will seek further innovations in the Journal to improve its overall
effectiveness, its attractiveness to potential authors and its significance and importance among its readership. This, | hope, will include
a growth within the Journal of emerging areas of importance in applied mechanics and a broadening of the coverage of cross-
disciplinary fields connected to them. We will also be considering improvements to the handling of manuscripts and reviews by
electronic means to improve the efficiency of the process and to ease the work of authors, reviewers and Associate Editors while
ensuring that the Journal remains the vehicle of choice for the best work in applied mechanics.

For me, it is a great honor to be appointed Editor oftbarnal of Applied Mechanics follow in the footsteps of many distinguished
individuals who have served before me in this position, such as the first Technical Editor, John Lessells, and his joint successors, Dan
Drucker and Joe Kestin. It is my hope that | will succeed as well as my predecessors in my stewardship of the Journal and carry out my
responsibilities as Editor in a way that makes the Journal stronger and more effective. In all this, thoulpuritae of Applied
Mechanicsthe board of Associate Editors and | need the support of the community of applied mechanics in the form of the submission
of its best papers and its willingness to carry out reviews of papers under consideration for publication. We hope that our efforts in the
coming years will merit that support and together we can assure thdtireal of Applied Mechanicsontinues to be the leading
publication for the field of applied mechanics.

Robert M. McMeeking

Journal of Applied Mechanics Copyright © 2002 by ASME SEPTEMBER 2002, Vol. 69 / 569
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e-mail: arruda@umich.edu A constitutive model is developed to characterize a general class of polymer and polymer-
like materials that displays hyperelastic orthotropic mechanical behavior. The strain en-
K- Grosh ergy function is derived from the entropy change associated with the deformation of
Associate Professor, constituent macromolecules and the strain energy change associated with the deformation
. Mem. ASME of a representative orthotropic unit cell. The ability of this model to predict nonlinear,
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. o in the literature. Simulations of more complicated boundary value problems are per-
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University of Michigan,
Ann Arbor, MI 48109-2125
1 Introduction in the strain energy functiow/= c(exp—1) wherec is a constant

Many engineering materials such as wood and fiber-reinforcédt)- In both cases, the strain energy function is strictly phenom-
composites, as well as biological tissues such as cardiac tissue §glogical. However, due to its simple analytic form, this model
skin, demonstrate anisotropic elasticity due to the presence of dif$ Peen used as a basis for investigating other mechanical char-
or more preferred directions in the microstructure of the materigcteristics such as growtis]) and as the constitutive model in
The degree of anisotropy is dependent on the preferred directidfi{® €lement analyses of structures such as blood veg$dls
and can be orthotropitfor some biological tissues, for example An €xample of a strain energy function that is more microstruc-
or transversely isotropiéfiber-reinforced compositeslepending turally based is one that sums an isotropic term that reflects the

on the microstructural symmetries. Additionally, the anisotrop%jponse of the isotropic ground substance and an anisotropic

can vary within the material as the orientation of the fiber®m that isolates the stretch along the principal material axis of

changes. Anisotropic materials that undergo small deformatiofft fibrous network and provides an increased stiffness to this

can generally be modeled using conventional anisotropic lineg@Mponent of the deformatiofi7]). This decomposition can be
elasticity. However, for rubbery elastic anisotropic materials suégPresented as

as collagenous biological tissues that can undergo large deforma- W=Wi (1t 1o 1)+ Woll, | 2
tions and exhibit nonlinear elasticity, a different constitutive 112,15+ Wallasls) @)
model must be used. wherel 4, I,, andl; are the invariants of the right Cauchy-Green

Attempts to model orthotropic hyperelasticity are primarily motensorC, 1,=N-C-N, Is=N-C?-N, andN is a unit vector that
tivated by observed orthotropic, nonlinear behavior in human tigives the orientation of the fibers through the continuum. More
sue, such as skif[1,2]) and heart tissud[3—6]). The load- recently, investigators have reduced the number of invariants nec-
deformation responses of each of these tissues show sim#asary to model tissuéor example, the dependence of the mate-
characteristics: an initial low-stiffness region, followed by a drasdal response on the invariants and |5 is generally weak and
matically increased stiffness at higher stretches and a finite exté&ence these invariants are not included in the strain energy func-
sibility. Additionally, responses to deformation in each of the thregon), as well as proposed forms of the functions andWw, ([8]).
principal material directions as determined from the fibrous struc- A microstructurally based model of a different form was first
ture differ in terms of the initial stiffness and the extensibility. introduced by Lanif2]. In his initially proposed mode2]) and

Early models of orthotropic hyperelasticity considered thi subsequent refinemenf®-11)), the constituent fiber or fibers
strain energy function to be a polynomial function of suitablare treated as elastic fibers that can only maintain tensile loads. A
large strain measures, such as the components of the Lagrangiatribution function for the unstretched lengths of the fibers in the
strain tensoK[3]). That is, for planar deformation, continuum exists such that some fibers are slack in the unde-

formed configuration and can be distended without resistance.
_ _ - This distribution, coupled with a distribution of the orientation of
W_W(Ell’Eﬂ'ElZ)_;k CinEnE2EL, (@) the fibers within the planar section, allows for a bulk nonlinear
- response even when the constituent fibers themselves are modeled
wherec;, are constants, j, andk sum over as large a range ass linearly elastic. The strain energy function for such a model is
necessary to capture the data; dag,, E,,, and E,, are the -~
in-plane r%:/omponl?ents of the Lagrangian strain tensor. More re- W=W(T(M),R(n), Pi(x)) ®)
cently, the polynomial function has been used as the argu@eniyheref,(\) is the response of an individual fiber of tygeo a
stretch\ along its length,R,(n) is the orientation distribution
*To whom correspondence should be addressed. function for fibers of type&k wheren is a unit vector tangent to the

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; ; il ; i
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- fibers, ancPy(x) is the probability that a fiber of typlefirst bears

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Januar!pad at lengthx (that is, the fiber is fU”y_UnC”mp?d at a length )
15, 2001; final revision, September 11, 2001. Associate Editor: K. R. Rajagopdihese models have been successful in modeling both the nonlin-
Discussion on the paper should be addressed to the Editor, Professor Robertddr, [ocking behavior of tissue as well as the orthotropic mechani-
McMeeking, Department of Mechanical and Environmental Engineering Universi?( | response

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepte ' .

until four months after final publication of the paper itself in the ASMEJBNAL OF he model presented here uses a network microstructure to for-

APPLIED MECHANICS. mulate a representative orthotropic unit cell. Unlike previous
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models, the constituent fibers are treated from a statistical me- l.
chanics perspective such that the corresponding parameters pos-

sess physical meaning. Also, in contrast to other models involving
an agglomeration of chains, here the fibers are connected in a
network and thusnetwork properties are also reflected in the
model parameters. This paper will describe the development of
the model, its predicted response to simple deformation states, and
its response to inhomogeneous deformations using the finite ele-
ment method.

2 Constitutive Model Development

To develop an orthotropic hyperelastic constitutive law based
on the macromolecular microstructure of a material, a three-step
process is employed:l) model the constitutive response of a
single macromoleculéchain; (2) develop the constitutive re- Fig. 1 The freely-jointed chain approximation of a macromol-
sponse for a representative unit cell composed of several chaig@ile as a series of rigid links, with one end pinned at the ori-
and (3) homogenize the unit cell into a three-dimensional, corin O and the other end located by the chain vector R in its
tinuum constitutive model allowing for near incompressibility'€ferénce configuration and by the chain vector rin its de-

The strain energy functiodV that results may be decomposed aéormed configuration

W= WentropyJr Wrepulsion+ Whuik 4)

where Wenyopy is due to the configurational entropy of the unit Following the method of Kuhn and Gmj11] for freely jointed
cell, Wiepuisionis due to the interchain repulsive forces in the unighains, the non-Gaussian probability density function is given in
cell, andW,, is a bulk strain energy function used to enforcdogarithmic form by

near incompressibility. The first two terms are attributed to the r 8

response of the underlying anisotropic fibrous network whereas In P(r):po—N(—ﬂan — ) (6)
W, is attributed to the isotropic interstitial fluid or ground sub- NI sinh,

stance. where p, is a constant,r=|r|, B,=L£ (r/Nl), and £(x)

2.1 Mechanical Response of a Single Fiber.The mechani- =cothx—1/x is the Langevin function. Assu_mlng no volume
cal response of various macromolecules, including biological mdii@nge due to entropy such tiat=dV, the strain energy change
ecules like titin([12,13), tenascin([14]), and DNA([9,15)), has &ccompanying deformation for a single chain is given by
been successfully modeled by using entropy-based constitutive r B: R Br
laws. Additionally, the entropy changes associated with the defor- Aw(r)=k® N[ <m5r+ In T) _(m’BR+ In T)
mation of a macromolecule have been the basis of several network sinh B, sinhBr
models of rubber elasticity[16—18). For these reasons, an
entropy-based constitutive law is used here to model the indihereBr=L"1(R/NI) andR=|R|. Treating the rigid linki as a
vidual fibers in the unit cell. characteristic length, Eq7) can be recast as

Both Gaussian and non-Gaussidrangevin statistics have
been used to develop models for elastic macromolecules by aS-Aw(p)=kON (ﬂﬂ +1in By )_ E,B +in Be ”
suming they are freely jointed chains. Since large-deformation N™¢ " "sinhg, N"P " sinhBp
(non-Gaussianbehavior will be considered here, Langevin statis- (8)
tics will be used. Details about the use of statistical mechanics g ere p=rll is the normalized deformed chain lengtjs,
model macromolecules can be found elsewhit8]); a summary  _ »—1(,/Ny P=RJI is the normalized undeformed chain length,

will be presented here. and B8p=L"1(P/N). Normalization of length quantities Hywill

e aﬁhmoa}ci;?]m&le(c'tljget ec?hna?tehgog?;?gg?;gJg?;?f;?cg?'duggﬁ be consistently maintained throughout the remainder of this work
. gt | p q Y and as such an explicit statement that length quantities introduced
and its value will depend not only on the number of bonds in ﬂ]gter are normalized bywill be dropped

backbone of the molecule but on the number of conformations *.." - = practice in entropy-based models to assume the

available to the bonds as well. As sudhis not a parameter that u???eformed length of a chain to be equal to its root mean square

can be measured directly, but it can be related to measurement _ : : '
crosslink density and crosslink-to-crosslink chain length, for in?TronS)tlr? en%tg]ﬁlﬁ]icz;r ;Z?ntz/lglmvl /£ z;[flu%czt(i]o)h \g\/&Nth{;Z gls\;s;:n i'?}

stance. The increase in strain energy associated with deformingan (8) is shown in Fig. 2 for various values df Note that a\
molecule from its undeformed vector lengih to its deformed increasesfrom N=50 toN = 200), the rms chain length decreases

vector lengthr (Fig. 1) can be calculated from the entropy differ- _ _ ; 2
. ; 1//N=0.14 to 1{/N=0.07). Negative values oAw indicate that
ence between the two states. A molecule with one end fixed at strain energy decreases at lengths shorter than théefes-

origin and the other end located in a voluhe at a locatiorr has nce length. The selection of a value N different from the

a configurational entropyhprqportloréal to th?. nl:jmber of Wf;ys ths length would vertically shift the curves in Fig. 2 but negative
can occupy space wit 'ts_;g” S S0 fixed, glven Y values of Aw would still exist for p/N<P/N and Aw would
=KkIn[p(r)dv ] wherek=1.38 10 ** J/K is Boltzmann's constant ;o ain 4 monotonically increasing function@M. Since a chain
andp(r) is the probability that the end of the chain is located ify giress free at a length for which the strain energy is minimized,
the volumedy atr. The increase in strain energy associated With o 4in at any nonzero lengtimcluding its assumed undeformed
the deformation of the chain from an undeformed chain veRION |gnath p provided P 0) will not be stress free, regardless of its
to a deformed chain vectaris reference length. Thus, it is not sufficient to develop a strain en-
p(r)dv ergy function based solely on the effects of isovolumetric entropy
(R)dV (5) changes and additional contributions to the strain energy function
P are necessary.

where © is absolute temperature amd/ is the volume initially The freely-jointed chain approximation, used to derive the
occupied by the end of the chain. strain energy change associated with the deformation of a single

Aw=—-0As=—-k® In
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— N=50,P/N=0.14
35} — = N=100,P/N=0.10
) - N =200, P/N=0.07

0 0.2 0.4 0.6 0.8 1

p/N
Fig. 3 Eight-chain, three-dimensional orthotropic unit cell.

Fig. 2 The change in strain energy accompanying deforma- The eight curved lines in the unit cell represent the constituent
tion of a single macromolecular chain from its rms length. In- macromolecules and the straight lines represent the bound-
set: a close-up of the curves near their respective rms lengths, aries of the unit cell. The cell has dimensions aXbXc along the
showing that a decrease in chain length below the reference material axes a, b, c, respectively, oriented with respect to the
rms length results in a decrease in strain energy. reference coordinate system X ;.

L . . - . a b c
chain given in Eq(8), is one statistical representation of a mac- PO =_pMN=—g— —b+=c
romolecule. However, other models exist that can similarly char- 2 2 2
acterize the mechanics of single chains. For example the wormlike a b c
chain (WLC) model, another entropy-based constitutive model, P4 =— |'->(8>:z a5 b— 5C 9)

has been successfully used to model long chain molecules like

titin ([13]) and DNA ([9]). As such, other chain models such aghe lengthP of each undeformed chain is
the WLC model could be used in place of the freely-jointed 1

chain approximation to develop the ensuing network constitutive e v e
law. However, provided the constitutive responses that are pre- P=3va“+b+cs
dicted from these chain models are similar to that of the freel
jointed chain mode{which is true for the WLC modg| the dif-

(10)

)éecause the undeformed lengths of each of the eight chains are
ferences resulting from using these models versus the free uivalent e_tnc_i because it is assumed that the undeformeq length
jointed chain model in a network constitutive model will not b feach qham is the rms length Of the chaP(\N), a constraint
significant([21]). Is establls_hed between the chain paraméteand the unit cell
aspect ratios,

2.2 Orthotropic Unit Cell. Constitutive theories for ini- 1
tially isotropic rubbery materials have been developed using a JIN= = JaZ+b?+ 2 (11)
variety of unit cells, including a three-chain modeR] a four- 2
chain model[23], and the more recent eight-chdih6] model.
These models allow for the rotation of the unit cell in space su
that the principal stretches are applied along fixed cell directio
The orientation of the principal stresses and stretches, coup
with the geometry of the unit cells, insures isotropy of the initia

mechanical response with respect to principal stretch space. cpains are fixed in the continuum and deform with the continuum

To incorporate the chain statistics into a unit cell that allows f . P () -
the initial orthotropy of a network with a preferred fiber orienta(ili‘agrang'am strain fieldE, the deformed lengthg™” of the indi

tion, an eight-chain orthotropic unit cell is used as shown in Fig\j/.'dual chains are

3. Orthotropy of the mechanical response of this unit cell results p=PIT.C.PM (12)

from two properties: the fixed orientation of the unit cell in space ) )

(as specified by the orthogonal principal material axes, andc ~ Where C=2E+1 is the right Cauchy-Green tensor ahds the
rotated relative to the reference coordinate sysémand the identity tensor. T.erms. of this form satisfy material frame |nd|f'fer-.
“dimensions” a, b, andc along the axes, b, andc, respectively €nce on inspection since Fhey are dependent on the deform_atlon
(these “dimensions” are actually dimensionless as they have be@Hy through the Lagrangian strain tensor. Note that following

normalized byl). Accordingly, the vector descriptio®? of each >Pence17], the invariants for a material with four families of

of the chains in the undeformed unit cell where the supersbripfe('l?forc("‘r)‘g fibers Orlented(i;':\Tlong Eh)e gonn_or_mallzed directions

=1...8denotes the chain number are P =P includel pwpqy =P C-PV/P* fori, j=1...4. The
deformed lengthe" are functions of these invariants and thus

pL— _ P(5)=§a+ Eb+ EC, satisfy the symmetry requirements given by Spert&t.
2 2 27 The strain energy of the unit cell due to configurational entropy

changes is the sum of the strain energies of the individual chains.

Noting that from Eqgs(9) and(12) the deformed length of a chain

P(1-4 is equivalent to the deformed length of the corresponding

This constraint follows from a consistent normalization of all

?@ngth quantities by and means that larger values afb, andc

F{fessarily reflect constituent chains with a larger number of rigid
A

ssuming an affine deformation, that is that the ends of the

a b c
(2 _pO) " a1 “ho —
P P 2a+2b 2c,
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chainP(®>~9 the strain energw of the unit cell resulting from the Wyuk Was developed for modeling the compressibility of elas-
entropy change associated with stretching the eight constituépners at finite deformations and was shown to capture the vol-

chains is ume changes of several elastomers undergoing hydrostatic com-
. _ ) pression and uniaxial tension tesfd.8]). There are two free
p i)” parameters in this modeB and «; B controls the bulk compress-
Wentropy= Wo+ 2k®NE W!BS)JF In— hg® (13) ibility nearJ=1 (no volume changeand«a governs the curvature

i=1 sinh5, of the hydrostatic pressure versus volume curve for larger volume

wherew, is a constant related to the nonzero entropy of the ufhanges. As this term governs the bulk isotropic response of the

; : ; ; material, it can be attributed to the response of the isotropic nearly
deformed chainéthus allowing Eq(13) to be written in terms of incompressible ground substance that is present in orthotropic hy-

Weniropy @S 0PPOsed tdWenrop) and 84)= L7 1[p™/N]. Because perelastic materials such as biological tissue.
Wentropy IS dependent on the deformation only throug, this The final form of the strain energy function is
strain energy function satisfies material frame indifference. 4 0 0
p B, }
N2
=1

The strain energy functioWeyopy is minimized wherp®=0, P 504 _
N 7r sinhg!)

nk®
consistent with the previous discussion of Fig. 2, and thus the WOx)=Wot 4

stress-free configuration of the unit cell when considering only the

entropic contributions of the constituent chains to the strain en- Bp 2. b2, 2 B

ergy is not the reference configuration. To enforce the previous - \/—Nm[)\a Np Ao ]|+ —z{coshia(J-1)]-1}
assumption that the reference length of each constituent chain is

equal to its rms length and establish a stress-free finite-volume 7
unit cell composed of eight chains at their rms lengths, an addj- .
tional term inpthe strain £:janergy function is needed.g This term ((}gherewo Is & constant.

denotedw epyision Since it reflects a mutual repulsion of chains

from each other that will prevent the entropic collapse of the unif Continuum Mechanics Considerations

cell while maintaining the orthotropic shape of the unit cell. A . . . . .
similar reasoning has been used previously to prevent the pre_'I'hls constitutive law is developed consistent with the tenets of

dicted entropic collapse of isotropic compressible rubbery elasfi@ntinuum mechanics as provided in detail elsewhere; conditions
materials by including a term of the forag In A;\\s in the strain that must be met include material frame indifference and material

energy function where, is a constant and; are the principal Symmetry (24]). As stated previously, since the strain energy

stretches([18]). Accordingly, the orthotropic strain energy func-function is only dependent on the deformation state through the
tion here is augmented by the term Lagrangian strain tensdg it satisfies objectivitymaterial frame

indifference on inspection. Additionally, it has been noted that the
8k0O \/N,BP strain energy functioW proposed here can be written as
Wiepulsior~ — m

INENEAE) (14) :
W=W(I piirp(i),J) (18)
whereh,=va'-C-a, \p=b"-C-b, and\ = c"-C-crepresent yhere (pip(),d) with i, j=1...4 represents a subset of the
the stretches along the principal material axes. The coefficientifyariants presented by Spencer for a material with four families
Wrepuision allows for a finite-volume stress-free reference stalg reinforcing fibers([17]). However, this does not speak directly
while the functional dependence orf )\g NS allows for an to the symmetry of materials for which this model is applicable as
orthotropic response of the unit cell. Note thag,,son Satisfies  the symmetry is dependent on the relative orientations of the fiber
material frame indifference on inspection as it is dependent on tfanilies.
deformation througt. Also, since the unit vectoig b, andc can Towards this end, one approach that can be used to examine the
be written in terms of the fiber directiof®$® — P using Eq.(9), implications of material symmetry has been developed by Smith
thenX,, \p, and\. can be written in terms of the invariantsand Rivlin, for example([25]) where orthogonal transformations
I e(ihp() Presented earlier and as proposed by Spefricgrfor ma- of the material coordinate systems are considered. This approach
terials reinforced by four classes of fibers. Finally, note that ttig followed here, where the material coordinate system is defined
effect of Wyepuision ON the total strain energy will be increasinglyby the principal material directiors b, andc. _
less significant as the material becomes more highly deformed a-€t H denote a coordinate transformatiuch as rotationthat

this is when the nonlinear strain hardening predicteavpy,.,yis does not change the mathematical description of the microstruc-
realized. ture of the material. For an isotropic material, this transformation
o . . could be any rotation. For the orthotropic material here defined by
2.3 Homogenization and Bulk Compressibility. The unit the material axes, b, andc, the set of symmetry transformations

cell above can be homogenized to form a macroscopic threg; s composed of any transformation that inverts one or several
dimensional strain energy function. Assuming a fiber density pgf the material axes such that

unit volume ofn and noting there are eight chains per unit cell, the

strain energy function per unit volume is a *a
N H, b|=| *b]. (19)
W(x)= % w(X)= g (Wentropy+ Wrepulsior)- (15) c *c
n

Note that a subset of these transformations includes 180-deg ro-
Note that the parameters in the modble chain density and the tations about any of the three material axes. Also note that since
unit cell d!mensmna, b, andc) need not be constant but can vanpp()= +aa+bb+cc, the set of invariants pipg) With i, j
with locationx. - ) o ~ =1...4that includes ten members can be reduced to a smaller
The constitutive law above is overly compressible in practicget of invariantsd ,=a’-C-a, 1,=b"-C-b, I,=c"-C-c, I,=a"
_To aIIo_W for contro_l over the compressibility of the material an . b, I,c=a'-C-c, |,c=b"-C-c that only has six members.
isotropic bulk contribution SinceW,, is isotropic, its value is invariant td;. On inspec-
B tion Wiepuision IS also invariant to H; because Wigpision
Wpuk=—{cosha(J—1)]—1} (16)  =Wiepusiof la.In .10 using the reduced set of invariants ang
@ Iy, andl are invariant taH, . To consider the effect oWeyopy,
is appended to the strain energy function whéredetF is the note thatH; effectively relabels the chainél)—(4) given in
ratio of the deformed to the undeformed volume. This form dEqg. (9). For example, the particular transformatiéiy(a,b,c)
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=(a,—b,c) relabels the chains as followkt, P =pP®) H, P> Y=b2\3—c?\3. (25)
=p@W, H,PO=pPD H PW=pP3  Similar relations will hold o _
for all other allowable transformations. Sind&,pyis dependent The constitutive equatioriB,=0 andTs;=0 from Eq.(24) can

on each of the deformed chain lengths in the same way, the chaif@n be decoupled by takifig,+ Ts3=0 andTo,— T53=0, giving
can be reordered without affectiVieop,, and thus this term and

the strain energy functiokV as a whole are invariant te;. As _nko | XB, (b%+¢?)Bp ) B
such, this material model is applicable forthotropic materials. Toot Tag=—5 p N +2Bsinh(J—1)=0
4 Examples _YB, (b*—c*)Bp
L _ T~ Tgg=———F7=—=0 (26)
To explore the response of a material with the above constitu- p VN

tive law to various modes of deformation, the Cauchy stress ten-
sor is calculated from the strain energy function. Towards this enahere J=X\,yX?— Y2/2b(_: and p= \/a_2>\21+ X/2. The equation
the second Piola-Kirchhoff stress tendor JW/JE is given by ~ T2~ T33=0 can be manipulated to give

4
~ nkO| o PP B (@l b? Br(b?—c?)
Tr=——r] > -2 D a a4+ —bb _pelmClp
k="g Zl p0 By ARt Vel Y(X) 5N 27)
c? B . 2 and the equatiof 5+ T53=0 can then be solved fot. The trans-
+)\70Cjc" o Sinfle=1) IEjk (20)  \erse stretches are calculated to be= J(X+Y)/2b% and X\,

h = J(X=Y)/2c>.
where Using the above formulation, the predicted response of the con-
€xjz Exy] stitutive law under uniaxial tension is shown in Fig. 4 for two
61kCy2Cpst TCX15szzg+ TCX1Cy253k, different sets of aspect ratio§l) a=2, b=3, c=4; and(2) a
1) =1.8, b:_3.124,c:4. Simulations were p(_arformed for uniaxial
deformation along each of the three coordinate axes, deixqgted
€ijx is @ component of the permutation tensor, aijdis a com- X,, and X, in the figure. All simulations were performed using
ponent of the second order identity tensor. The Cauchy stress tga-g. 10?4/ m?3, N=7.25, andB=1 MPa. From this figure, it is

sor T can be calculated from the second Piola-Kirchhoff Stre%parent that nonunity aspect ratios give rise to an Orthotropic

9 €y
F

tensor as response since for a given set of aspect ratios the deformation is
1 stiffest along the direction with the longest dimensiofy for
T=ZFTF' (22) these simulationsand most compliant along the direction with the
J smallest dimensionX;). Additionally, holding the locking stretch
whereF is the deformation gradient. constant while increasing the value of one of the unit cell dimen-

For the following analytic studies the principal material axe§ions(@ stiffens the response of the material in that directisn)(
will be aligned with the coordinate axé§;, X,, andX;. Small While making the response in the transverse directiy) (vhose
volume changes will be assumed and thyshe material param- dimension(b) was decreased more compliant. Sirce/as held
eter that governs the hydrostatic pressure versus volume curvatgastant for the two sets of simulations, the response inXthe
for large volume changes, is set equal to unity. Additionally, théirection did not noticeably change.
deformations will all be triaxial deformatiomo shear such that
the deformation gradient is

ANy O O . — .
]
F=| 0 X O (23) 6 Direction I
0 0 )\3 X1 X2 X3 ll
Accordingly, the Cauchy stresses are ST y—-- - : ol A
2y 2 1 2aA00DDO
T =0 Be | g a1 T4y
11—~ 9 = - a
4\] I P \/N- g A
- q \
nkOb® N3, Be 83/
Topo=—— — —|+Bsinh(J—1) &5
22 47 | p \/N- I’( w il A
nkOc2[\38, Bp]
= — — |+ i —
Tasz 2 | \/ﬁ B sinh(J—1) (24)
where p=+/a?\$+b2\5+c?\5/2 and 8, and By are as defined - .
before. 0 5 4 6 8
4.1 Uniaxial Deformation. The above equations can be Stretch

used to predict the model’s response in uniaxial tension by settip%. 4 Response of the orthotropic eight-chain model to
T2=T33=0 and solving those two coupled equations for th§njaxial deformation in each of three directions (X, ,X,,Xs) for

transverse stretche).e2 and A5 given an ap.plied.stretchl. AN two sets of aspect ratios: (1) a=2, b=3, c=4, and (2) a=1.8,
efficient way of solving for these stretches is to introduce two new=3.124, c=4. The material axes are mutually orthogonal

variables, and aligned with the coordinate axes. All simulations were
; 24 3
Lo 2, o2 performed using parameters n=8-10"/m°>, N=7.25, and
X=Db*N5+C\5 B=1 MPa.
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20 T 4.2 Biaxial Deformation. Biaxial deformation analyses are
! conducted in which the material axes are aligned with the applied
b loads such that there are no shear stresses. Recent biaxial tests on
Along X g aortic valve cqsp$[28]) hgve been conducted at a constant rat_io

T2 o F, of the applied forces in two mutually orthogonal material di-
direction rections with no applied force in the third direction and this pro-

o tocol will be followed here. The applied Ioad's¢=T11A23)\2)\3

§ andF,=T,A%\ A3 (WhereAd, and A}, are the initial values of

0 the corresponding cross-sectional ayeas controlled and related

g to each other by the rati®,=F,/F, and the stretches; and\,
j in the directions of the applied stresses as well as the out-of-plane

Along X ;
direction

-
(3]

stretch\ ; must be calculated.
The three constitutive equations

Nominal Stress (kPa)
o

(3l

7 270 2
5590/ nk®a“As;| BN
G M’ f1=TZ3 Tl_% +BJAgssinr(J—1)—F1)\1=O

1 1.2 14 1.6 1.8 2 » 0 ,

Stretch nk@b“A7i;| BN
2=T13 Pa_Pel, BJAY,sinh(J—1)—F,F1\,=0

Fig. 5 Data from uniaxial tests on rabbit skin from Lanir and \/N
Fung [1] and the corresponding fits using the orthotropic 270 2
model. Data are represented by symbols and the fits by solid _nk@)c A1 ,3)\3_ & TBIA sinhJ—1)=0 (28
lines. The parameters used to fit the data are  n=3.75-10°%/m?, 37 4 N 12 Sinh( )= (28)

N=1.25, B=50 kPa, a=1.37, b=1.015, and c¢=1.447.
are numerically solved simultaneously for the stretches \»,
and\ 3, given a value of;. A modified Newton-Raphson algo-

rit,’nm was used that requires the derivatives\pfwith respect to

The anisotropic hyperelastic mechanical response of biologiGaliy orqer to estimate the stretches at each step according to the
soft tissue such as skin and heart tissue is often attributed to pg tions

underlying collagenous network in the tiss{i2,26,27) and thus

the microstructural model developed here is readily applicable to . )
modeling the mechanical behavior of these materials. Accord- 7\,('+1)=>\,§')+
ingly, the model was used to fit data taken from in vitro uniaxial

tests on rabbit skin in which lateral contraction was constrainecheree<1 is a relaxation parameter used to avoid overshoot.
([1]), the results are shown in Fig. 5. The tests were performedThe above algorithm was used to simulate load-controlled bi-
along two mutually orthogonal material directiof$; and X,). axial tension for various values of the stress r&jcassuming all
Prior to testing the specimens were allowed to completely relanitial cross-sectional areas to be equal to unity; results are shown
([1])) and thus the orthotropy of the response is solely due to Fig. 6. All parameters other thah, were held constant in the
material orthotropy. In the figure, data are represented by symbeimulations:n=8-10?/m?, N=2, B=40 MPa, a=1.2, b=1.5,

and the theory by solid lines. The parameters used to fit the dafiadc=2.076. Figure ) shows theT,, versus\, response and

are n=3.7510°Ym?, N=1.25, B=50kPa,a=1.37,b=1.015, Fig. &) shows theT,, versus\, response for a given value of
and c=1.447. Sincea>b the fibers are preferentially alignedF,. For larger values of,, the response in th&,-direction
along theX,-axis, resulting in a stiffer response and earlier lockbecomes more compliant and locks at a higher stretch whereas the

N\ )
Wi) [F Y= fi]e (29)

ing in that direction as compared to tXe-direction. response in th&;-direction stiffens and locks at a smaller stretch.
0.25 0.25
0.2} 02}
~0151 ~0.15
g £
2 2
- &
= 0.1 =04
0.05+ 0.05}
0 Q
0.5 3 0.5
Fig. 6 Simulations of load-controlled biaxial tension for various values of the load ratio F,. Other parameters in

the simulations were fixed: n=8-10Ym3, N=2, B=40 MPa, a=1.2, b=1.5, and ¢=2.076. Figure 6 (a) shows the
T,, versus X\, response and Fig. 6 (b) shows the T,, versus M\, response for a given value of F,.
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— y " T shear strains which could be due to off-axis mountif28]) or
6ol X, direction X, direction 1 | material heterogeneity within the samples being tested. Never-
0 o {, theless, the orthotropic model developed here was used to fit
X ] ‘ ® o representative data from Billiar and Sacks assuming equibiaxial
50 |~ Fixed Fresh Fixed o | 1 tension, homogeneity of the tissue samples, and perfect alignment
£ o h 4§ 9 of the test axes with the material axes. Data and fits are shown
S 40 ! d in Fig. 7 for fresh tissue and fixed tisséata are shown with
< 1 s I o symbols and fits are shown with linesParameters used for
S a0l |p 9 the fits are as follows: for fresh tissue data=6-10"/m°,
2 b b T N=1.96,B=100 kPa,a=2.05,b=1.7, andc=0.865; for fixed
hd . o‘i'n tissue data,n=7-107/m?, N=1.48, B=500 kPa, a=1.85,
201 5 7 o b=1.35, andc=0.822. Given the assumptions used to model the
o data, the qualitative agreement between the data and the theory is
10 good; better results would likely be obtained with information
about the shear strains present in the tests.
0 L
1 1.2 1.4 1.6 1.8 5 Finite Element Simulations
Stretch

The constitutive law was incorporated into ABAQUS/Standard
Version 5.8, a commercially available finite element software
package produced by Hibbitt, Karlsson & Sorensen, [&8], for
simulation of more complex problems. A nonlinear orthotropic
hyperelastic constitutive law can be incorporated into ABAQUS
using the user subroutine UMAT, which allows the most flexibility
in the material response. Needed in this subroutine are calcula-
tions for any given deformation gradient of the Cauchy stresses
and the derivatives of the Cauchy stresses with respect to the
Lagrangian strains. A 15-term series representation of the in-
verse Langevin function was used to save computational time
in calculating these values and to avoid problems associated
Of particular interest are the simulations féy=2 and 5 where with the argument of the inverse Langevin function being greater
\, initially decreases below unity, meaning the sample contradtsan unity, for which values the inverse Langevin function is
in the X,-direction. However, as the stresses increasbegins to not defined.
increase, reaching values greater than unity for larger stresseslo verify the incorporation of the constitutive law into
This same phenomenon is observed in Xjedirection whenF, ABAQUS (especially in view of possible convergence problems
=0.5 and is a consequence of the orthotropy of the material asiarthe finite element codesingle element simulations of uniaxial
isotropic material would not show similar behavior. tension and biaxial tension were performed and compared to the

The orthotropic behavior shown in Fig. 6 is qualitatively similanumerical solutions. A single eight-noded three-dimensional linear
to data obtained from equibiaxial tension tests on fresh afdick element was used and the deformations were prescribed by
glutaraldehyde-fixed aortic valve cusps performed by Billiar an@ssigning loads to individual nodes. Figure 8 shows comparisons
Sacks [28]. This tissue is known to possess an anisotropieetween the finite element simulations and the numerical solutions
microstructure due to the preferred orientation of constituent fier uniaxial tension using parameters=2-10°/m®, N=3, a
bers. Though the investigators attempted to align the test axe®, b=2.5,c=1.32, andB=1 MPa. Figure &8 shows the stress-
with the principal material axes, test results showed nontriviatretch response and Fig(b® shows the variations of the trans-

Fig. 7 Equibiaxial tension data from Billiar and Sacks
and corresponding fits using the orthotropic model. Data are
plotted as symbols and represent the constitutive response
for fresh and glutaraldehyde-fixed aortic valve cusp samples
in the two material directions in which loads were applied.
Fits are plotted as lines and were generated using the follow-
ing parameters: for fresh tissue data, n=6-10"/m?%, N=1.96,
B=100 kPa, a=2.05, b=1.7, and c¢=0.865; for fixed tissue
data, n=7-10"/m3% N=1.48, B=500kPa, a=1.85 b=1.35,
and ¢=0.822.
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Fig. 8 Finite element simulations
tension. Parameters used for the simulations are

the transverse stretches
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(using a single linear brick element

2
Applied stretch
(b)

) and numerical simulations of uniaxial

n=2-10%/m3, N=3, a=2, b=2.5, ¢c=1.32, and B=1 MPa. Figure
8(a) shows the stress-stretch response in the direction of the applied load and Fig. 8
N, and A3 as functions of the applied stretch ~ A;.

(b) shows the variations of
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Fig. 9 Finite element simulation  (using a single linear brick element ) and numerical simulation of load-
controlled biaxial tension. Parameters used for the simulations are n=2-10%/m3, N=25, a=1.8, b=2, ¢
=1.66, and B=1 MPa. The ratio of the applied loads was fixed at F,=F,/F,=5. Figure 9 (a) shows the load-
stretch responses in the directions of the applied loads and Fig. 9 (b) shows the variation of the transverse
stretch A3 as a function of the stretch A, . The inset in Fig. 9 shows the constitutive responses closer to zero
deformation.

verse stretches with the stretch in the direction of the deformatiamodes atX=0 mm constrained from moving in th¥-direction
The finite element simulation for this deformation is very accuraigonstrained uniaxial extensiprfwo different orientations of the
at all values of the stretches. principal material axes were simulated: one in whictvas fixed
A comparison of finite element simulations and numericalt a 30-deg orientation throughout the doméig. 10a)) and
simulations of load-controlled biaxial tension is shown in Fig. ne in which a sinusoidal variation of the orientationafvas
Parameters used for these simulations are2-107/m3, N
=2.5,a=18,b=2, c=1.66, andB=1MPa. The ratio of the (a)

applied loads was fixed &,=F,/F,=5. Figure 9a) shows the ] S
load-stretch responses in the directions of the applied loads and E cHHEHE P A T
Fig. 9b) shows the variation of the stretchks and\ 5 as func- E10r B H e T T A P
tions of the stretch\;. The inset in Fig. 9 shows the constitutive > ol HEHEH R B A

responses closer to zero deformation. Excellent agreement be-
tween the finite element simulations and the numerical simula-
tions is again seen throughout the deformation.

Though the ability of the finite element code to converge to the gzo-
correct solution is excellent for the two cases described above, E10
other simple homogeneous deformations can be problematic de- >

pending on the values of the parameters being used. For example, of
for a very large bulk modulugB>C, where C,=nk® is the
rubbery modulug convergence of the finite element code for (c)
simple homogeneous tests such as uniaxial tension required suc- 20t
cessive relaxations of the convergence criteria used by ABAQUS
as the simulation progressed towards the strain harddioeg-
ing) region. The accuracy of the uniaxial stress-strain response is 0
not compromised for these simulations; however, the predictions
by the finite element simulations of the transverse strains grew (d
progressively worse as these strains affected the stresses onlyina * 5,
minor way. Similar results have been found when simulating hy- 3
drostatic compression; with orthotropic material parameters ( E10
#b+#c) a sample should deform orthotropically but this is not >
realized in finite element simulations because the orthotropic . X
strains affect the hydrostatic stress in an insignificant way. 30 40 50 60

To test the ability of ABAQUS to simulate a more complex X (mm)
problem using the orthotropic hyperelastic constitutive law, a
three-dimensional model was created with two distinct orient&id. 10 Simulation of constrained uniaxial simulation in which
tions of the principal material axes. The domain size is 5®IS initially fixed at a 30-deg orientation throughout the domain
mmx 20 mmx0.1 mm with an element density of 4Fx 1 eight- Fig. 10(a)). Parameters used in the simulation are n=2

. 24 3 = = = = = i
noded brick elements. Parameters used in the simulationa argt0, /M N=1.1,a=14, b=10, c=1.2, and B=1 MPa. Figures
0(b—d), corresponding to the global stress-stretch states

=2.107Ym®, N=1.1, a=14, b=1.0, c=1.2, andB=.1 MPa.  marked (b)—(d), respectively, in Fig. 12, show deformed
The nodes alX=0 mm andX=50 mm were constrained from meshes with contours of the stress o, (kPa). Contour lines are
moving in theY-direction and the nodes xt=50 mm were addi- shown in increments of 3 kPa, 10 kPa, and 15 kPa for Figs.
tionally given a displacement in the positiXedirection with the 10(b), 10(c), and 10(d), respectively.

€ |
E10
>
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Fig. 12 Nominal stress (in the X-direction ) versus stretch
plots extracted from finite element simulations of constrained
uniaxial extension with constant initial orientation of a and si-
nusoidally varying initial orientation of a as shown in Figs.
10(a) and 11 (a).

0 10 20 30 40 5 60 70
X (mm . . . .
() stretch than the same regions in Fig. 10. Thus, a constant fiber

Fig. 11 Simulation of constrained uniaxial simulation in which orientation results in a globally stiffer material but one with
the initial orientation of a varies sinusoidally with X (Fig. 11(a)). Smaller local peak stresses.

Parameters used in the simulation are the same as for the Figure 12 shows nominal stregs the X-direction versus

simulation in Fig. 10. In Figs. 11 (b—d) the contour definitions stretch relations extracted from the simulation results. The filled
and corresponding locations on the global stress-stretch curve symbols represent the deformation states at which contour plots
(Fig. 12) are the same as for the simulation in Fig. 10. are drawn in Figs. 10 and 11. Nominal stress was determined by

summing the forcesin the X-direction on the end nodeat X
=0 mm) and dividing by the initial cross-sectional ar@amny);
stretch was calculated by dividing the deformed length of the

=50 mm is 30-deg and the initial orientationX# 25 mm is—30 mesh by the undeformed Ieng(ﬁo ”.‘m>- Though the same pa-
deg (Fig. 11(@)). In both cases, the orientation bfwas always 'ameters were used for both simulations, the gross response of the
locally orthogonal toa in the piane and was always oriented simulation with constant fiber orientation was stiffer than that with
perpendicular to the plane. The condition of strong ellipticity wagarying fiber orientation. This supports what was previously seen
upheld throughout these simulations as the local Jacobian matrite&igs. 1q¢b—d) and 11b-d), that the overall stresses at a given
extracted from the simulation results at various spatial locatiosgretch are higher in the simulation with constant fiber orientation
and deformations were verified to be positive definite. than in the simulation with varying fiber orientation.

Figures 10b—d) and 11b—d) show deformed meshes with con-
tour plots of o1, (units of kPa for the two simulations at the Conclusions
global stress-stretch states marked with filled symbols and Iabeped o ) ) ) o
(b)—(d) in Fig. 12. Contour lines in Figs. 16-d) and 11b—d) are A finite deformation orthotropic hyperelastic constitutive law
shown in increments of 10 kPa, 50 kPa, and 300 kPa. All of tH&@s been developed based on the statistical mechanics of macro-
plots show nonsymmetric deformations and stress distributiof¥lecules. In addition to the local orientation of the principal
about the vertical centerline initially located Xt=25 mm. For Mmaterial axes, only five material parameters are necessary to use
simulations with constant fiber orientation the material is initialljhis model to characterize a nearly incompressible orthotropic ma-
slightly drawn in in both they-direction and theZ-direction (re-  terial: densityn of the constituent molecular chains, aspect ratios
sults not shown heteAt larger deformations the material expand$. b, andc of the representative unit cell, and bulk modulis
in the Y-direction (Figs. 1Gb—d)) while continuing to contract in From the aspect ratios the locking stretishof the constituent
the Z-direction. The expansion in th¥-direction is more pro- chains can be determined. The chain parameters and unit cell di-
nounced on the left side of the top ed@é=20 mm in the unde- mensions can be related to directly measurable physical properties
formed configurationas compared to the right side; this is resuch as the fiber length, density, and orientation. This model has
versed on the lower edgdY=0mm in the undeformed been shown to successfully predict an orthotropic material re-
configuration. This asymmetry is due to the constant skewed fib&Ponse in uniaxial a_md bnglaI tension and has been incorporated
orientation. In Figs. 1tb—d) there is contraction in th¥-direction into ABAQUS for simulation of more complex boundary value
(as well as in theZ-direction at all deformations; along the top Problems.
edge the material contracts to a greater degree near the right side
o_f the s_amplt_e as compared to the left side as a consequence offaferences
flb'i; Orleﬂta?on' . [ll] Lanir, Y., and Fung, Y. C., 1974, “Two-Dimensional Mechanical Properties of
~ At each of the three deformation states, the overall stress level” rappit Skin—II: Experimental Results,” J. BiomecH,, pp. 171-182.
in Figs. 11b—d) is lower than that in the corresponding plot in [2] Lanir, Y., 1979, “A Structural Theory for the Homogeneous Biaxial Stress-
Figs. 1@b—d). However, the peak stresses are higher in Figs. Strain Relationships in Flat Collagenous Tissues,” J. Biometh.pp. 423—

L . 436.
11(b_d) .than In Flgs' 10)_d) (In bOth. cases the peak stresses are[3] Lanir, Y., 1979, “Biaxial Stress-Strain Relationship in the Skin,” Isr. J. Tech-
located in th_e upper _Ieft and'lower right corners of the mpades nol., 17, pp. 78—85.
a result, regions in Fig. 11 will lock at smaller values of the global [4] Humphrey, J. D., Strumpf, R. K., and Yin, F. C. P., 1992, “A Constitutive

prescribed such that the initial orientation dt=0 mm andX
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A Surface Crack in a Graded
w020 4 Medium Under General Loading
Conditions

F. Erdogan
Fellow ASME
In this study the problem of a surface crack in a semi-infinite elastic graded medium
Department of Mechanical Engineering and under general loading conditions is considered. It is assumed that first by solving the
Mechanics, problem in the absence of a crack it is reduced to a local perturbation problem with
Lehigh University, arbitrary self-equilibrating crack surface tractions. The local problem is then solved by
Bethichem, PA 18015 approximating the normal and shear tractions on the crack surfaces by polynomials and
the normalized modes | and Il stress intensity factors are given. As an example the
results for a graded half-plane loaded by a sliding rigid circular stamp are presented.
[DOI: 10.1115/1.1488661
1 Introduction fracture analysis of nonhomogeneous materials. Wang €13].

. . . and Nozaki and ShindfL4] developed a multilayered interfacial
Graded materials, also known asictionally graded materials one model to simulate the arbitrarily varying properties of

(FGMS) are generally r_nultiphase _composites with _continuogsngGMS In addition to the references cited[ib—14], the review
varying thermomechanical properties. Used as coatings and int |rfic|e.s[15 16 may be of particular interest '
e- ' '

facial zones they tend to reduce stresses resulting from the ma

rial property mismatch, increase the bonding strength, improve the

surface properties and provide protection against severe therrgal .

and chemical environments. Thus, the concept of grading the thér- Formulation of the Problem

momechanical properties of materials provides the material scienThe geometry of the crack problem is shown in Fig. 1. The

tists and engineers with an important tool to design new materigleaded half-plane contains a surface crack of lemgthhe crack

having highly favorable properties in certain specific applicatiorsirfaces are assumed to be subjected to general mixed-mode load-

([1-6]). ing. Because of the fact that main results of the crack problems in
To take full advantage of this new tool research is needed mptaded materials are rather insensitive to the variations in Pois-

only for developing efficient material processing and characterizeen’s ratio, in this study it is assumed that the elastic properties of

tion techniques but also for carrying out basic studies relating the medium may be approximated by

the safety and durability of FGM components. Typical current and _

potential applications for this new class of materials include ther- #(X) = pro EXPL¥X), (12)

mal barrier coatings and abradable seals in gas turbines, prepara- K= constant, (Ib)

tion of wear-resistant surfaces in load transfer components such as . i )

gears, bearings, cams and machine tools, various interlayersvifiérex is the shear modulusy is a nonhomogeneity parameter,

microlectronic and optoelectronic devices, high-speed graded fffas_d"’ for plane strain ande=(3-2)/(1+s) for generalized

dex polymer optical fibers, impact resistant components, and thBfane stressy being the Poisson’s ratio. By using the Hooke's law

moelectric cellsgMiyamoto et al.[6]). w(X) au v

The primary interest in this study is in initiation and propaga- Oxx(X,Y) = 1 (k+1) (?—+(3— K) 0_] (2a)
tion of surface cracks in graded materials. Initially it is assumed K X y
that the conditions of crack initiation on the surface of the un- w(X) Jv Ju
cracked graded medium have been met and a surface crack has ayy(Xy)="—7 | (k+1) -2 +(3=«) &} (20)
been initiatiated. Since the material on the surface of FGM is K y

generally 100 percent ceramic and consequently rather brittle, this au 9
can be verified by applying a simple maximum tensile stress cri- ny(X,Y)—M(X)[a—Jr &] (20)
terion. The main problem is, therefore, that of a surface crack y

subjected to general mixed-mode loading conditions. The coritée equilibrium conditiongr;; ;=0 can be expressed as
sponding mode | problem was considered by Erdogan and Wu U Ju o au o
[7.8]. The more general mode | problem of a graded layer bondeg - 1) —5+(k—1) =5 +2——+ y(k+1) — + (3= k) —
to a homogeneous substrate was studied by Kasmf#aihe X aJy Ixdy (28 ady
interface crack problem for graded coatings under antiplane shear:0 ()
loading is studied by Jin and Batfa0] by assuming an exponen- ’

tial variation in elastic properties. The power-law variation in the 9% 9% J2u
elastic properties of graded materials is considered by Wang et @.+1) — +(«k—1) e +2

J
—_— + J—
[11]. A moduli-perturbation approach is used by Gag] for the % oxoy

HZ 4 1’9u
(K )ﬁx y(k )ay

=0. ()
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . .

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLEDME-  EQuations(3) must be solved under the following external loads:
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2,
2001; final revision, Nov. 14, 2001. Associate Editor: H. Gao. Discussion on the oxx(0y)=0, oxy(O,y)=0, —oy<®, (4a)
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of
Mechanical and Environmental Engineering University of California—Santa Barbara, (Tyy(xlo) =—p(x), a'xy(x,o) =-—q(x), 0<x<d, (4b)
Santa Barbara, CA 93106-5070, and will be accepted until four months after final .
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. gij(x,y)—0 as (X2+y?) =, (i,j=x,y), (4c)
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1 1 — >
“ n4=§ 5175\/4(» —diwy+ 5, R(ny) <0, (od)

d FGM
— 1 (-
l uf >(X'y)zﬂ E Cj(w)expny+iwx)do,
% i1
¥ (10a)
Fig. 1 Surface crack in a graded medium U(li_)(x’y): 27 ) JZ CilA(lepmyHiede,
(100)
for y<0, and

where p(x) and q(x) are the crack surface tractions which are

obtained from the solution of the original problem in the absence i+ _ * 2 . d

of the crack. We observe that the unknown functions that are Y1 (X:¥)= 5~ It Cj(w)expny+iox)do,
convenient in this problem are the derivatives of the relative crack (11a)
opening displacements defined by

210 7 (k1 0)—p(x,—0)=F1(x), 0<x<d, (5a v(li”(x.y):ir >, Ci(w)Aj(0)expnyy +iox)do,
K+ 1 (7X(U( v( )=TFa( , (59) 27 ), i=3 ! ! !
(11b)

2 d
Ho — (u(x,+0)—u(x,—0))=fy(x), 0<x<d. (5b) fory>0.InEqgs.(10) and(11) Ci(w), (j=1,2,3,4) are unknown
k+1 9x andA; are given by

2.1 The Opening Mode Problem. In the graded half-plane nX(k—1)+(iwy—w?)(k+1)
problem having a symmetry with respect to the0 plane in Al(w)=— ! i ,
geometry and material property distribution, the mod@r the nj(2io+y(3-«))
opening modgand mode ll(or the sliding modgproblems turn (12)
out to be uncoupled. Therefore, the problems may be formulatednsider now the half-plane problem for-0 without the crack.

separately. Furthermore, the solution to each problem may be @& observing that the problem has a symmetry with respegt to
pressed as the sum of two solutions, namely the infinite mediumQ plane the solution may be expressed as
with a crack and a half-plane>0 without a crack.

(j=12,34.

We consider first the infinite medium with a crack. Defining the (h) _ - (h)
displacements by 1 (xy) o Ur'(x,@)coday)da, (1)
) 1 * . o
(i) - (i i
ui’(x,y)= o jﬂul (o,y)exp(i wx)dw, (6a) U(lh)(X,Y):f VU (x,a)sin(ay)da, (130)
0

(6b) where superscrigt and subscript 1 refer to the half-plane and the

1 ©
(I) — (1) i
(xy)= J_le (o y)expiox)do, opening mode, respectively. From E¢). and(13) it follows that

from Eq.(3) it follows that d2uf" duf" dvi"
a.(3) it follow (k+1) =+ y(k—1) ———aX(k— 1)U+ 20 —
dZU(” d\/") dx X dx

ENTI0)
(k—1) dy2 +(k+1)(yio— o)UY+ (2iw+ y(3—k)) —— dy +y(3—K)V(1h)=O, (148)
=0, (78) dui " dz\/(lh) dvi®
(li> dZV(li) 2a “dx +vya(k—1)U}"—(k—1) >——y(k—1) ax
2iw+y(k—1)) ——+(k+1 +(k—1)(yio— w?)VY
(2ot y(x=1) o=+ (e 1) g + (k= D (o= w)) VY + (et V=0, 1)
=0 (7o)  Assuming the solution for Eq14) of the form exppx), we find
where superscript and subscript 1 refer to infinite medium and (p*+yp—a—iad)(p*+yp—a®+iad)=0,  (15)
opening mode problem, respectively. Assuming the solution of

Eq. (7) in the form expfly), the characteristic equation, its roots, 1 1 T

and the displacements are found to be Pi=— 5yt oy Hdattdiad, NR(p)>0, (16
(N2=sin+iw(y+iw))(n+8n+io(y+in))=0, (8)

\/ﬁ p2— - 2 ’y+ VY +4a *4Ia51, m(p2)>0, (16))
61=vy Py (80) 1 1
1 p3:—§ —E\/yz+4az+4ia51, R(p3)<0, (1&)

1
n1=—§51+§\/4w2—4iw7+5§, R(n;)>0, (%) .

1 -
11 Pa=—5 7= 5y t4a’—dias, NR(p)<0, (1&)
np=5 1+ VAo’ —dioy+ 55, R(ny) >0, (D)

1

1
n3=f§5f§\/4w274iw7+5§, R(ngz)<0, (X)

u"(x,y) = f0x<83 exp(psx) + B, exp(p,x))cog ay)da,
(17a)
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U&h)(x,y): JO (B3D3 EX[Xp3X)+B4D4 exp(p4x))sirl(ay)da, j E (D]pJ a)B (a)S”«l(ay + R 2

—o)=

(170)
X ) +iwA))Cj(w)expn)y)do=0, 0<y<w (25b)
“(k+1)+ —Kk)+yp;(1+
Dj=— pilrt D+ a(1 =)t ypi(1+ ) (j=3,9 where f1(x) is the new unknown function which is determined
a(2p;+y(3-«)) from Eg.(23a). Because of symmetry in this problem it is suffi-

(18)  cient to consider 8. y<co only. Evaluating some of the integrals

whered, is given by Eq(8b) andBs(«) andB,(«) are unknown in closed form by using the theory of residues, E@5) may be
functions. We now express the solution of the mode | problem 5gduced to

follows:
’ +1)p;+D a(3— B*(a,t)=R 1), (268
0100y) U8 xy) + Uy, (1) 2, ((k+1)p;+Dja(3=k)B] () =Roa(e ), (269
i 4
1Y) =0 (xy) v (xy), (1%)
' ' 2, (Dpj=a)Bf () =Rya(ast), (260)
Ty =ogh(x ) +oifixy),  (kj=xy) (1% "
. . ~ where
where displacements are given in terms of six unknown functions g
C,, ...,C4, Bs, B, which are determined from the following six k+1 Y
conditioner >t Bj(a)= o f B*(a t)exp( E—)\l)t)fl(t)dt, (27)
Ty (0y)=0, (2®8)  andRyy, Ry, and\; are given in Appendix A.
0yy1(0y)=0, —oo<y<o, (200) 2.2 The Sliding Mode Problem. Referring to Fig. 1, in this
section it is assumed thgt=0 is a plane of antisymmetry. Con-
ayy1(X,+0)=0yy1(X,—0), (21a) sequently, in Eq(4) p(x)=0 and in Eq.5) f1(x)=0. Thus, fol-
lowing a procedure similar to that of Section 2.1, the displace-
Ty (X, +0)=0yy1(X,—0), 0<x<ee, (21b) ments for the graded infinite medium with a crack alongxaeis
may be written as
U;(X,+0)=u4(x,—0), 0<x<oo, (22)
S 1 (= .
Tpa(x0)=—p(x), 0<x<d, (230) uj >(X,y>=5f El Ej(w)expn;y+iwx)dw
R
v1(X,+0)=v,(x,—0), d<x<o. (230) (289)

The homogeneous conditio20)—(22) may be used to eliminate i) 1 .
five of the unknown functions. The mixed boundary conditions Y2 xy)=5= » le Ej(w)Aj(w)expnyy +iox)dw,
(23) would then determine the sixth unknown.

By using the definitions given by E¢p), observing that for the (280)
mode | problem under consideratida(x)=0 andq(x)=0, re- fory<0 and
placing the condition23a) by (5a), and substituting fron{10), 1
(11), (17, (19, and(2) into (20)—(23), we obtain the following (i) _ = ‘ i
expressions givin@€,, . ..,C,4, B3, B, in terms off(x): Uz (x.y) 27 ) _.. ;3 Ej(w)expnyy +iox)do,
(29)
Ci(w)= P (w)f fi(t)exp —iwt)dt, (24a) 1 (= &
v (x,y)= EJ 123 Ej(w)Aj(0)expny+iox)dw,
4 2 - 1=
> (i0(3= k) +AN(1+))P;(w E (io(3— k) (2%)
j=3 = for y>0. In Eqs.(2_8) and (29) E;(w), ... Es(w) are unknc_)wn
+AN(1+ )P () =0, (240) andn; andA; are given by Egs(9) and(12), respectively. Simi-

larly, the general solution for the graded half-plaxe 0 under
4 2 antisymmetric loading conditions may be expressed as

> (nj+iwA)P(0)— D, (Nj+iwA)P(0)=0, (2&) " oo _

=3 =1 uy"(x,y)= . (Ga(a)exp(psx) +Ga(a)exp(psX))sin(ay)de,

4 2
(3Ga)
iw 23 Aij(w)—Z:l APj(w) =1, (240) .
' ' o (x,y)= f (Go(@)Ha( a)exp(pgx)
P4(@)+Pg(@) ~Py(@) ~Py(w)=0, (24) °
4 +Gy(a@)Hy(a)exp(pgx))cogay)da  (30b)
2 ((k+1)p;+Dja(3—«))Bj(a)cog ay) whereG;(a) andG,4(«) are unknown, the characteristic equation
0j=3 and its root9;, (j=1,...,4) aregiven by Eqs(18) and(19) and
s Hs(a) andH,(«) are
o] ;3 (io(k+1)+Ajn;(3—«))Cj(w) Hi(a) = ')’pj(K+1)+C(2(1_K)+pj2(K+1)’ (=34,
a(2p;+y(3—«))
Xexpny)do=0, 0<y<ee, (253) (31)
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We now express the displacements and stresses in the cracked 4
half-plane under antisymmetric loading in terms of the following E (ijj+a)GJ*(a,t)= Rey2(a,t), (41b)
sums: j=3
ua(%,Y) =g (x,y) +ug(x,y), (32) Wwhere
_ @) (h) k+1 (d
va(xY) =0 (xy) + v (xy), (320) G(a)= 5, fo Gf<a,t>e><p( (%—xl)t)m(t)dt, (42)

Ti26Y) = Ly +aih(y),  (Kj=xy).  (33) o _
andRy,,, Ry, and\; are given in Appendix A.

In the surface crack problem under antisymmetric loading the
solution given by Eqs(32) and (33) must satisfy the following
boundary and continuity conditions:

(34) 3 The Integral Equations

Txx2(0Y)=0, 0,,(0y)=0, —ow<y<eo, ] ) ) )
By using the solution developed in Section 2 all stress and

Tyy2(X,+0)=ayy,(X,—0), displacement components can be expressed in terrhg0f and
_ . fo(x) with appropriate kernels. Specifically, observing that the
Tay2(%0) = (X, —0), - O<x<e2, (35) problem is uncoupled, using Eg2) and (36), the conditions
vo(X, +0)=v,(x,—0), 0<x<o0, (36) (23a) and(37a) which are yet to be satisfied may be written as
Oyy2(X,00=—q(x), 0<x<d, (37a)

d
oyy(x,O):IimJ kii(x,y,t)f(H)dt=—p(x), 0<x<d,
Un(X,+0)=U,(x,—0), d<x<oo, (370) y=0J0

(43)
Again, by replacing Eq(37a) by Eq. (5b) and using the solution g
given by Eqs(28)—(31), the conditiong34)—(37) may be reduced _ __
to a system of equations expressing the unknown functions Txy(%,0) J,'TO 0 Kaa(x.y.Tz(t)dt a(x),  O<x<d,
Ej(w), (j=1, e 4), G3(a) and G4(«) in terms of the new (44)
unknown functionf,(x) as follows: ) . )
1 . where the kernelk,; andk,, are given in Appendix B. Note that
_ Kkt . unlike the homogeneous half-plane, in the graded medium with a
Ej(w)= 210 ZJ(“’)L fa(exp(—iwt)dt, (8 surface cracky;(x,01) andka(X,01) are not equal. The singular

nature of the integral Eq$43) and (44) and that of the solutions

4 f, andf, may be determined by examining the asymptotic behav-
>, (03— k) +AN;(1+ 1)) Zi(0) ior of the integrand& (7, (r=i, h; s=1,2) given in Appendix B.
=3 After performing the necessary analysis the integral E43.and
2 (44) may be reduced to
—Zl (i0(3— k) +A;N(1+ ) Z;(w)=0, (3%) a1 1
. = , fo ;m-i-hm(x,t)-i-hm(x,t) f1(t)dt
_2:3 (nj+iwAj)zj(w)_§:l (nj+iwA)Z(0)=0, (3%) =—exp —yx)p(x), 0<x<d (453)
i= i=
. 2 fd11+h 1)+ hoor(x,1) | F(t)dlt
E Ajzj(w)_z AZj(0)=0, (3%) ol t=x 225X, 1) + hoar(X,1) | F2(1)
=3 =1
. =—exp—yX)q(x), 0<x<d 450
0{Zu(0) + 2Z4(0) Zo( @)~ Zy(w)}=1. (3% P 79400 (40)

4 whereh,,5 andh,,s are generalized Cauchy kernétsf the order
“ ) 1/) that become unbounded as the argumerasdt tend to the
fo ;3 ((k+1)pj—Hja(3—«))Gj(a)sin(ay) end point zero simultaneously. The limits of these singular kernels

are found to be
4

1 (= . lim hy(X,t)= limhy(x,t)
+Z —% |=3 (lo(k+1)+Ajn;(3—x))Ej(w) (x,1)—0 - y—0 .
exp(ny)do=0, 0<y<eo, (40a) (x,1)—0
. .
- = lim hyx(X,1)
f E?,(ijj-i-a)Gj(a)COS{ay) —o
0j=
\ 1/ 1 . 2t 42 0<(tx)<d
L =2 —+ ——-——], o<(t,x)<d.
L z (N +iwA)E;(w)exp(n;y)dw=0, Tlt+x  (t+x)2 (t+x)°
27 ) _ ., i=3 (46)

0<y<ew. (40b) The expressions fohe and hy;, (k=1,2) are given by Dag
In this problem, too, because of symmetry it is sufficient to cor}-ﬂ]' It may be ot_aserved thi6) is the standard expression found
sidery>0 half of the medium only. Also, by evaluating some o or edge crgcks n homogeneous mater(gls]). Thus, the solu-
the integrals in closed form Eq&0a,h) may be reduced to tion of the integral equations may be expressed as
4 fi(x)=(d—x)"Yf¥(x), 0<x<d, (47a)

]23 ((k+1)p;—H;ja(3— k))GF (@,1) =Ryl a,t), (41a) 0= (d—x) 1500, 0<x<d, (am)
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where f1(x) and f3(x) are unknown bounded functions. Note

that, there is no singularity at the crack mouth 0, y=0 while

the standard square-root singularity is retained at the crack tip.

4 On the Solution of the Integral Equations

The integral equations are solved by using a collocation tech- —0.5

nique. First the interval (@) in (45) is normalized by defining

fih=a¢i(r), =12, —-1<r<1, (4&)
d
t:§r+§, o<t<d, -—-1<r<1, (4%0)
d d
=§s+§, 0<x<d, -—1<s<Ll (4&)
The solution may then be expressed as
$a(r)=(1=0) P23, A PLHEO(r), (4%)
=
$2r)=(1=1) X AgyPLTHE0(r), (4%)
=

whereP{ Y29(r),
ing (49) in (45), truncating the infinite series &tand regularizing
the singular terms, the integral equations become

% —L2T(n+1) +1,—n+1/2;3/2(1—-5)/2
“~ 21727rf(n+ 1 C(ntlon (1=s)/2)

+ mlm(s)}Alnz —exp(—yd(1+s)/2)p(d(1+s)/2),

—1<s<1, (509)
N

~1/2T(n+1)
DR 2127Tr(n+1/2) F(n+1,—n+1/2:3/2(1—s)/2)

n=0

+ mzm(s)}Am: —exp(— yd(1+s)/2)q(d(1+5s)/2),
—1<s<1, (5M)

wherel'( ) is the Gamma function arfe( ) is the hypergeometric
function. Expressions fomy,(s), (k=1,2) are given in Appen-

dix B. Equations(50) are solved numerically using a collocation
technique. The following roots of the Chebyshev polynomials are

used as the collocation points:
m(2j—1)
Sj=Co

2(N+1) )’
After solving the integral equations fdy andf, stress inten-

[EEN

N+ (51)

y oo

sity factors at the crack tipd,0) may be evaluated by using the

results. The stress intensity factors are defined by and calcul
from

ky= lim 2(x—d)oy,(x,0)

x—d+0

M()

OK

V2(d—x) %(v(x,O*)—v(x,Of)),

(52a)

x—d—
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Table 1 Normalized mode | stress intensity factors

ky/(0nd™?)

yd oo ai(Xd)  oy(xId)?  oa(xId)® ou(x/d)?
-3.0 44345  1.9324 1.2148 0.8897 0.7076
-2.0 31238  1.4495 0.9525 0.7209 0.5879
-1.0 19846  1.0196 0.7152 0.5663 0.4774
1.4988  0.8317 0.6099 0.4970 0.4274
—10°! 1.1802  0.6690 0.5387 0.4498 0.3932
—10°? 1.1259  0.6847 0.5265 0.4417 0.3873
—10°% 11220  0.6831 0.5256 0.4410 0.3869
1074 1.1215  0.6829 0.5255 0.4410 0.3868
0 1.1215  0.6829 0.5255 0.4410 0.3868
1074 11215  0.6829 0.5255 0.4410 0.3868
1073 11210  0.6827 0.5254 0.4409 0.3868
1072 1.1175  0.6812 0.5246 0.4404 0.3864
101 1.0864  0.6690 0.5176 0.4358 0.3830
05 1.0225  0.6439 0.5035 0.4264 0.3763
1.0 09930  0.6328 0.4974 0.4225 0.3735
2.0 09807  0.6289 0.4956 0.4215 0.3729
30 09884  0.6329 0.4981 0.4233 0.3743

kp= lim V2(x—d)oyy(x,0

—1<r<1, are Jacobi polynomials. Substitut-

x—d+0
I )\/Z(d D (u(x,0")— u(x,0°))
 deo K+1 ax o
(520)
From (49) and(52) it then follows that
N
= —expyd)Vd X AP H20(1), (53)
n=0
N
ko= —exp(yd)\Vd >, AP Y29(1). (5%)
n=0

5 Results and Discussion

The main results of this study are the variation of the stress
intensity factors as functions of the material nonhomogeneity pa-
rametery. Some sample results are also obtained giving the crack
opening displacements. Assuming that in practical applications the
crack surface tractions for the perturbation problem would be suf-
ficiently well-behaved continuous functions and may be approxi-
mated by fourth-degree polynomials with sufficient accuracy, the
input functions may be expressed as

4

p(x)=nZO aa(x/d)", (548)
4
q(x):ngo (xId)", (540)

where the coefficients, andr, are known constants. To facilitate
the application of the results, the normalized stress intensity fac-
tors are given in Tables 1 and 2 in tabular form. In the tables the
numerical results for the limiting case gfd=0 are obtained by
§é)(ljvmg the mixed mode surface crack problem in a homogeneous
medium. As can be seen from the tables, for sufficiently small
values of the nonhomogeneity parametas., | yd|=10"*) results
obtained for a graded medium are in agreement with the results
obtained from the homogeneous formulation up to the last signifi-
cant digit calculated. In the special case k)= o, and q(x)
=7, for | yd|—0 the convergence of the stress intensity factors
calculated for a graded medium to the known homogeneous re-
sultsky /(ogd) =k, /(79/d)=1.1215 is shown in Fig. 2 as well
as in the Tables 1 and 2. Ford# 0 the problem does not have a
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Table 2 Normalized mode Il stress intensity factors

0.3773 Fig. 3 Normalized mode | stress intensity factors,

ko /(7yd™?)

vd o n(Xd)  (xid)2 m(xId)® r(x/d)*
-30 16704  0.9273 0.6738 0.5437 0.4635
-2.0 14765  0.8398 0.6202 0.5063 0.4355
-1.0 1.2825  0.7534 0.5678 0.4700 0.4083
-05 11940  0.7144 0.5443 0.4539 0.3964

—10°? 1.1347  0.6885 0.5288 0.4433 0.3885
—10°2 1.1197  0.6825 0.5253 0.4409 0.3868
—10°® 11212  0.6828 0.5254 0.4410 0.3868
—10°4 11215  0.6829 0.5255 0.4410 0.3868
0 1.1215  0.6829 0.5255 0.4410 0.3868
1074 1.1215  0.6829 0.5255 0.4410 0.3868
1073 1.1216  0.6830 0.5255 0.4410 0.3868
1072 11233  0.6833 0.5256 0.4411 0.3869
10! 1.1094  0.6777 0.5224 0.4389 0.3853
05 10727  0.6620 0.5132 0.4327 0.3807

1.0 1.0429  0.6497 0.5062 0.4280
20 1.0164  0.6397 0.5008 0.4245 0.3749
30 1.0128  0.6394 0.5011 0.4249 0.3753

the limiting case ofyd=0 one can used=10"*.

=0y, Fig. 1), the closed-form solution for the stress intensity

factork,(d) is given by Koiter{ 18] in terms of an infinite integral

as follows:

1

kq(d) _ /2(B+ 1)
Uo\/a_ \/;A ’

a sinh ma)

(65)

1 =]
logA=—— |
9 Wfol+a20

whereB is an arbitrary real constant greater than 1 and the result

g

\/m(coshwa)—?_az—l))da

(56)

is independent of the choice & The numerical evaluation of
(55) and(56) show that(Kaya and Erdogahl9])

ki(d)

(To\/a

=1.12152226-10"8.

21.20 T T T
2
E — k(0"
£ ——— kI (5, d"™
£ 116 g
z
a — T
g 112 =
=
- 1.1215
]
A= 3
E 1'08 1 | ) 1 I

1 02 3 4 -3 2 4

log(-jd) log()

1.20

(67)

Fig. 2 Convergence of the numerical results for small values

of the nonhomogeneity parameter
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5 [ T T T T
4_— px) =0, ]
F cy(x/d) 4
i 3f cz(x/d)z—_
g o3 (x/d)*]
T Ik oy (x/d)*
L 11215 |
1 —
0 -; P P - 1
3 2 1 0 1 2 3

p(X)=poexp(yx)

K=2,

The result given by57) was verified by Mahajaf0] by using an

entirely different method.
closed-form solution and in the computer program one can notThe calculated stress intensity factors for crack surface tractions
directly substituteyd=0. Thus, the results given in Tables 1 and54) are also shown in Figs. 3 and 4. The figures are self-
2 and Fig. 2 indicate that to calculate the stress intensity factor féxplanatory: as the material nonhomogeneity parametete-
creases, botk; andk, tend to increasek; andk, are much more

It should be pointed out that in a semi-infinite plane homogé&ensitive to the variations i for y<<0 (for the “softening” ma-
neous elastic medium containing a surface crack of ddphd
subjected to uniform tension parallel to the surféeg,(x, + )

2.4 —— — B
I qx) =1 ]
. T, (x/d) |
181 H(x/d)}]
& 5 (x/d)° |
] r 4
& 12 11215 Ty (x/d)* ]
™ I
e \
I e S—
\
0.0 Lt L . !
-3 -2 -1 0 1 2 3

Fig. 4 Normalized
m(X)= po exp(yX)

mode |l stress intensity factors, K=2,

24 T T
g L
g |
Z 1.8 /d
Z L .
g &
= ky / (cd?) P
g 1L2p l 1.1215 1
= + — ]
& ~
e ]
S 06| k! (zd") i
= I
A
a
E -
00—l
10 05 00 0.5 1.0

Fig. 5 Normalized
fixed grip tensile an
o=8puq€ey/(k+1),

P

modes | and Il stress intensity factors for
d shear loading, «=1.8, u(x)=pqexp(yx),
T=8poYo/(k+1)
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K v=0.1 L
\ — e y=0,25 ] 12:
- — - y=0.49 ] i
' ~ 10
~ 350 N\ . = r
a bc L
[\ ' S
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g \ 2 6
- B r
2.0 4 Y of
11215 ] 2
0.5 e by PP TP 0—

3 2 1 0 1 2 3 0.00 0.25 0.50 0.75 1.00

wd xld

Fig. 6 The influence of Poisson’s ratio on the normalized Fig. 8 Normal crack opening displacement,  v*(x)=v(x,+0)
mode | stress intensity factor in a graded half-plane with a sur- —Vv(x,=0), p(x)=09, q(x)=0, k=2, p=po exp(yx)
face crack; the case of plane strain, p(x)=0y, q(x)=0,
#(X)=po exp(yX)
loading(rg and 7). These are all intuitively expected results. From
Figs. 8—11 it may be seen that for the homogeneous half-plane
terial) than fory>0, and generally for a givey the amplitude of (y=0) the calculated crack opening displacements in all four
k, is greater than that df,. Figure 5 shows the results for fixedcases are identical. This may easily be shown analytically by us-
grip tensile €,y(X, ¥ *) =€) and shear fy,(x, ¥ )= y,) load- ing Egs.(45) and (46). Figures 8—11 also show that the crack
ing. Note that as the nonhomogeneity parameténcreases, the opening displacement for the homogeneous medium is bracketed
normalizedk, (dashed linesmonotonically increases, whergag by the results obtained foy<<O andy>0 and generally the crack
goes through a minimum near=0. The figure also shows the opening displacements for the fixed grip loadif, and y,)
mode | results for a graded half-plane under fixed grip loading
obtained by Kasmalka9] (full circles). Not only is the agree-
ment quite good, also somewhat paradoxial result concerning the S —

slight increase irk; for y<O is independently verified.
Figures 6 and 7 show the influence of the Poisson’s ratm
the modes | and Il stress intensity factors in a graded half-plane
with a surface crack loaded by uniform crack surface tractions [
p(x)=o0y andq(x) =1y, respectively. As shown in the previous 5
studies, the effect o on k; does not seem to be significant. :;
However, particularly for large values of the influence ofv on =
k, could be significant. ;5,
Figures 8—11 show some sample results for the normalized R
crack opening displacement. It may be observed that in all cases
as y increaseqor as the stiffness of the medium incregséke
crack opening displacements decrease, the influenceauf the .
crack opening displacement is more significant fet0 than for 0.00 0.25 0.50 0.75 100
y>0, and generally fory<0 crack opening displacement under
mode | loading(oq and o) is greater than that under mode I x/d
Fig. 9 Tangential crack opening displacement, u*(x)=u(x,
Py P +0)—u(x,=0), p(x)=0, g(x)=7o, k=2, p=po eXp(¥X)
I V=0.1— 8"'I"'l"'l"'
“ ———v=0.25 |
— — y=0.49 |
o 1.6 P \\ b A
S A : 3
= N\ s
= \ 3
=< L i
1217 41215 B
E [ *
—_— | .
0‘8...I...I.‘....!H‘l... |
302 -1 0 1 2 3 ol
0.00 0.25 0.50 0.75 1.00
P
x/d
Fig. 7 The influence of Poisson’s ratio on the normalized ] ) ) ) )
mode |l stress intensity factor in a graded half-plane with a Fig. 10 Normal crack opening displacement for fixed grip
surface crack; the case of plane strain, p(x)=0, g(x)=7y, loading, Vv*(x)=v(x,+0)—v(x,—0), 0=8pupey/(k+1), K=2,
#(X)= o eXp(¥X) M=o eXp(yX)
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Fig. 11 Tangential crack opening displacement for fixed grip
—0), 7=8uoyo/(k+1), k=2,

loading, u*(x)=u(x,+0)—u(x,
m(X)= po exp(yx)

1.00

YR=0 ]

YR=0.5

— — yR=2.0

kL,RZIP

alR

Fig. 14 Mode Il stress intensity factors for a graded half-plane
loaded by a sliding circular stamp as shown in Fig. 12,
(b—a)/R=0.1, d/R=0.1, n=0.4, k=2, p(x)=pq exp (yx)

(Figs. 10 and 1jLare closer to the homogeneous values than the 12 [T T T
crack opening displacements obtained from constant strésges
and 7). R=20
Figure 12 describes a sample problem concerning a graded 10 i 3
half-plane with a surface crack loaded by a sliding rigid circular —_ r
stamp. It is assumed that along the contact areg<b the con- X 3
dition of Coulomb friction is valid withz as the coefficient of 2 08 1.0 7
friction. For the geometry and the direction of loading shown, the Py L
results are given in Figs. 13-15. Figures 13 and 14 show the L 0.5
modes | and Il stress intensity factors, respectively. Figure 15 06t o1 .
shows the normalized forc® for a given contact area If( I (')
0'4 [ PUS SRR NS VAU RUUN FUVS IOV SR TUUY T S T
0 2 4 6 8
alR

Fig. 12 A graded half-plane with a surface crack loaded by a

sliding rigid circular stamp

0.10 —r——r—7——r—

0.05

&
S 0.00 |+
E i YR=0
I —— — yR=01
005 | YR=0.5
h — — yR=10
I — — yR=240
0.10 L T
0 2 4 6

Fig. 13 Mode | stress intensity factors for a graded half-plane
loaded by a sliding circular stamp as shown in Fig. 12,
(b—a)/R=0.1, d/R=0.1, =04, k=2, u(x)=pq exp(yx)

Journal of Applied Mechanics

alR

Fig. 15 Normalized force required for a given contact area
(b—a)/R=0.1, d/R=0.1, »=0.4, k=2, pu(x)=py exp(yx)

—a)/R=0.1) as a function of the stamp location. As expected,
increases with increasing material stiffnées y) and distance.
However, for @/R)>2, P is very nearly constant. For details and
extensive results sgé7].

It should be observed that sinkg can be positive or negative
there are no restrictions on the signs and relative magnitudes of
shear loadingsy, . ..,74. However,og, ...,0, must be such
that the resultank, is positive. Ifk; is negative the results may
still be useful in superposition with additional external loads giv-
ing a sufficiently highk; so that again finak, is positive. In the
absence of such tensile loads the mode | problem has to be recon-
sidered as a crack closure or crack/contact problem in which near
the crack tip the crack surfaces are partially closed and the contact
region is determined by using,(c)=0 as closure criterion,
wherec(0<c<d) is the end point of the contact region.

Thus, in the sliding contact problem considered in Fig. 12, the
results given in Fig. 13 indicate that for small values of normal-
ized material nonhomogeneity paramejd® and stamp distance
a/R, k; is negative and, as they stand, the results are not valid.
However, the results would be valid if the medium is subjected to
for example, an additional in-plane tension.
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Appendix A

Various Functions Used in the Solution of the Mixed-Mode

Crack Problem.

1 k—1 a?
Ruxa(a,t)= 7 KL NN ND) 71 YA 2 COg A ot)
+ (YA =2(\F+A5)sin(\ 1)}, (A1)
Ryya (@ t):—E ! {IN(N2H N3+ 9214)
xyLt e T k+1 N AW+ A2 AT R2 4
X COENot) — Ny (NG+N5— y2/4)sin(\ 1)},  (A2)
R B 2 k—1 a®
wela,t)=— Py NN (N2 AD) {A2 cogA,t)
+NqSin(A,t)}, (A3)
11 a?
Ryya(a,t)=— Pl 7\1>\2(>\§+>\§) { YNz cogA,t)
+ (2N A3+ YA g)sin(Aot) ), (A4)
R,+R
M=\ (A5a)
2
R,—R
Ap= % (A5h)
Ry= V(v24+ a?)?+ a?y*(3— k)l (k+1), (A6)
R,= %4+ o?. (A7)
Appendix B
Expressions for the kernelskq;(x,y,t) and k,x(X,y,t).
kll(x,y,t)=k(lil)(x,y,t)Jrk(lq)(x,y,t), (Bl)
KaaX,Y,t) =k (X,y, t>+k“‘><x,y,t>‘ (B2)
+1
k{(x,y, 0= - - exp(yx) ('>(w y)explio(x—t))dw
(B3)
+1
kP(x,y, = “ — @f K (a,t,x)cog ay)da,
(B4)
Ky 0= (x+1) ‘” )f K8)(w,y)explio(x—1)dw
(B5)
KD (x,y,t) = (+ 1) m ) J K®(a,t,x)c0g ay)da,
(B6)
where the integrands are given as
4
K (w,y)= 2 (io(3= ) +An;(1+K)Pj(w)exp(n;y),
(B7)
4
KW(w,y) ]2_3 (n;+iwA)Z;(w)expn;y), (B8)
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4
KW (a,t,x)= 2 (Pj(3-k)+Dja(1+x))BF (at)

Xexp(pjx+ (y/2—N)t), (B9)
4
KW (a,t,x)= 2 (a+H;p))GF (a,hexp(pix+(y/2—Xp)t).
(B10)

The terms used in Eq50) are in the following form:

1
mlln(s):J (1—r)"YH (s,r)PY20(r)dr, (B11)
-1

1
mzm(s):f (1—r) " YH,y(s,r)P Y20(r)dr, (B12)
-1

H _df, (d_ dd d (d dd d
11(S,I’)—§ 11s §S+§,§r+§ +hqq §s+§,§r+§
(B13)
H _df, (d dd d (d dd d
22(S1r)_§ 225 §S+§,§r+5+ 20f §S+E’§r+§
(B14)
References

[1] Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I., eds., 198GM-90,
Proc. 1st International Symposium on Functionally Gradient Mateyiglenc-
tionally Graded Materials Forum, Tokyo, Japan.

[2] Holt, J. B., Koizumi, M., Hirai, T., and Munir, Z. A., eds., 199BGM-92,
Proc. 2nd International Symposium on Functionally Gradient Mateyi@lse
American Ceramic Society, Westerville, OH.

[3] lischner, B., and Cherradi, N., eds., 19985M-94, Proc. 3rd International
Symposium on Structural and Functional Gradient Materidsesses Poly-
techniques et Universitaires Romandes, Lausanne, Switzerland.

[4] Shiota, I., and Miyamoto, Y., eds., 199FGM-96, Proc. 4th International
Symposium on Functionally Graded MateriaEsevier, Amsterdam.

[5] Kaysser, W. A., ed., 1999-GM-98, Proc. 5th International Symposium on
Functionally Graded MaterialsTrans Tech Publications, NH.

[6] Miyamoto, M., Kaysser, W. A., Rabin, B. H., Kawasaki, A., and Ford, R. G.,
eds., 1999Functionally Graded Materials: Design, Processing and Applica-
tions Kluwer Academic Publishers, Norwell, MA.

[7] Erdogan, F., and Wu, B. H., 1997, “The Surface Crack Problem for a Plate
With Functionally Graded Properties,” ASME J. Appl. Mecle4, pp. 449—
456.

[8] Erdogan, F., and Wu, B. H., 1996, “Crack Problems in FGM Layers under
Thermal Stresses,” J. Therm. StressES;, pp. 237-265.

[9] Kasmalkar M., 1997, “The Surface Crack Problem for a Functionally Graded
Coating Bonded to a Homogeneous Layer,” Ph.D. dissertation, Lehigh Uni-
versity, Bethlehem, PA.

[10] Jin, Z. H., and Batra, R. C., 1996, “Interface Cracking Between Functionally
Graded Coatings and a Substrate Under Antiplane Shear,” Int. J. Eng3&ci.,
pp. 1705-1716.

[11] Wang, X. Y., Wang, D., and Zou, Z. Z., 1996, “On the Griffith Crack in a
Nonhomogeneous Interlayer of Adjoining Two Different Elastic Materials,”
Int. J. Fract.,79, pp. R51—R56.

[12] Gao, H., 1991, “Fracture Analysis of Non-Homogeneous Materials via a
Moduli Perturbation Approach,” Int. J. Solids Struc27, pp. 1663—1682.

[13] Wang, B. L., Han, J. C., and Du, S. Y., 2000, “Crack Problem for Non-
Homogeneous Composite Material Subjected to Dynamic Loading,” Int. J.
Solids Struct.37, pp. 1251-1274.

[14] Nozaki, H., and Shindo, Y., 1998, “Effect of Interface Layers on Elastic Wave
Propagation in a Fiber Reinforced Metal-Matrix Composite,” Int. J. Eng. Sci.,
36, pp. 383—-394.

[15] Erdogan, F., 1995, “Fracture Mechanics of Functionally Graded Materials,”
Composites Eng5, pp. 753-770.

[16] Erdogan, F., 1998, “Crack Problems in Nonhomogeneous Materi&ist-
ture, A Topical Encyclopedia of Current Knowleddg. P. Cherepanov, ed.,
Krieger Publishing Company, Malabar, FL, pp. 72—-98.

[17] Dag, S., 2001, “Crack and Contact Problems in Graded Materials,” Ph.D.
dissertation, Lehigh University, Bethlehem, PA.

[18] Koiter, W. T., 1965, discussion of “Rectangular Tensile Sheet With Symmetri-
cal Edge Cracks,” Trans. ASME, J. Appl. MecB7, pp. 237-238.

[19] Kaya, A. C., and Erdogan, F., 1987, “On the Solution of Integral Equations
With Strongly Singular Kernels,” Q. Appl. MathXLV, pp. 105-122.

[20] Mahajan, R., 1991, “Crack Problems for an Elastic Film Bonded to an Ortho-
tropic Substrate,” Ph.D. dissertation, Lehigh University, Bethlehem, PA.

Transactions of the ASME



Vibration and Post-buckling of

In-Plane Loaded Rectangular

Plates Using a Multiterm
s | G@l@FKIN’S Method

University of Canterbury,
Christchurch, New Zealand

e-mail: lanko@mech canterbury.ac.nz A procedure to calculate the natural frequencies of in-plane loaded, thin, slightly curved,

simply supported rectangular plates is presented, with numerical results. This includes the
solutions to von Karman'’s static equilibrium equation and the linear shell vibration equa-
tion using Galerkin’s method. The compatibility equations are given in terms of Airy stress
functions which satisfy the “shear free” and “constant normal displacement” in-plane
edge conditions. This procedure is an extension to the method presented by Hui and
Leissa, the difference being the use of a multiterm Fourier series representation for the
initial imperfection, the static deflection and the vibratory modes.

[DOI: 10.1115/1.1489449

1 Introduction the in-plane loading will be expressed nondimensionally in terms
In an interesting article on the vibration of geometrically imof the nominal lowest buckling load of a uniaxially loaded simply

P ; — D2 2 2\22
perfect rectangular plates, Hui and Leig4a describe a single- supporteq flat plate given by_\IX_C__DTr_ ((1/2) +(1/b3) )°b%,
term Galerkin’s method to solve the nonlinear von Karman‘é’h%reD is the plate flexural rigidity given by =Eh"/(12(1
equation for the static equilibrium state, and the linear shell vibra-»°))- For simply supported plates, bo#fy andz may be ex-
tion equation for the small amplitude vibratory motion, with thdressed as Fourier sine series
corresponding compatibility conditions expressed in terms of Airy
stress functions, for simply supported plates subject to the follow- zO(x,y):E 2 Zg; j sin(i mx/a)sin(j wy/b) (1)
ing in-plane boundary conditions: all edges tangentially free [

(shear freg and constrained to move with constant displacemeahd
in the in-plane direction normal to the edges. For these conditions,
the Airy stress functions derived 1] satisfy the compatibility

equation exactly, making this an ideal case for investigating the z(x,y)=2i E Zi j sin(imrx/a)sin(jmy/b). )
effect of geometric imperfections on the natural frequencies of !
in-plane stressed plates. While any out-of-plane imperfection may be represented by an

In [1], the initial imperfections, the static displacements and thefinite series as in Eq(l), computations are only done for a
transverse vibration modes were assumed to be of the same faramcated series, with the number of functions in theandy
as one of the vibration modes of the corresponding flat plate. THgections beingn, andn, . The integers andj would take odd
purpose of this paper is to extend this approach to permit thalues for symmetrical cases and even values for antisymmetrical
inclusion of a series of several vibration modes for the static andses.
dynamic out-of-plane displacements. This method was first usedThe compatibility equation is
by the author in a preliminary study to obtain the natural frequen- 4 s 2
cies of slightly curved, unstressed plates, the results of whichwere v T = EN((Zxy) "= (Zoxy) "= Z 02 yy T Zos0oyy))- ®3)
subsequently verified by Harringtd@] in his undergraduate re- The in-plane boundary conditions are

search project.
ny(oly):ny(avy):O;Fyy(an):Fyy(a7y):Nx;ny(xro)
2 Static Analysis =Fyy(X,0)=0;F(x,0)=F (x,b) =N, . 4)

Consider the static equilibrium of a simply supported rectangu- Supstituting Eqs(1) and(2) into Eq.(3) and carrying out some
lar plate with a small initial imperfectiory(x,y), thicknessh, and  algebraic, trigonometric and calculus operations leads to the fol-
edge dimensiona andb under biaxial normal in-plane loadings|owing expression foF which also satisfies Ed4).
of intensity N, andN, . Let the out-of-plane static displacement
measured from the plane containing the plate edges(kg), _ 2 2
and the static Airy stress function B€x,y). The plate is made of F=Nyy*/2+Nyx“2+ Cozi 2 Zk zl (Taijia Taijia + Taiju
an isotropic material having a densijpy Poisson’s ratiov (taken
as 0.3 in calculationsand an elastic modulUs For convenience, + Taiji)(Zi jZii = Zoi jZok,1) - (5)

—_— . o Here
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final publication of the paper itself in the ASME)URNAL OF APPLIED MECHAN- . )
IcS. T1ijki =Ca O (i +K)mx/a)cog (j +1) my/b),
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in which
c,=0 if i=k and j=I otherwise
ci=(ijkl =i212)/((i—K)%Ir+r1(j—1)?)?;
Co=(ijkl +i212)/((i—K)2r+r(j+1)?)?;
cs=(ijKl +i212)/((i+K)2r+r(j—1)?)?
ca=(jkl =i212)/((i+K)2r+r(j+1)?)?,
where the aspect ratio=a/b.
The equilibrium equation for a rectangular plate is

DV*4(2=20)=F yyZ xx+ F xsZyy= 2F xyZoxy -

Using Galerkin's method with a weighting function of the form

sin(pmx/a)sin(gmy/b) gives

(6)

a b
Dm*((p/a)®+(a/b)?)*(Zp,q—Zop,q) (abl4) — f J O(F,yyz,xx
x=0Jy=

+F xZyy— 2F xyZxy)sin(pmx/a)sin(qmy/b)dxdy=0. (7)

The equation of motion for small amplitude out-of-plane vibra-
tions of a plate is

DVAW— phw?W—F y W, —F W o+ 2F Wy,
—fyyZaxt f 2yt 2f 42 4, =0.
On application of Galerkin’s method, this yields
(D7*((p/a)®+(a/b)*)?— phw?)H, 4(abld)sin(wt+ ¢)

a b
_.f of O(F’VVW’XX+vaxwvyy_ZF,XyW,xy"'f,yyz,xx
x=0Jy=

1 w2y 2f \yZ xy)sin(pax/a)sin(qmy/b)dxdy=0.
12)
Substituting Egs(5) and(11), and the values foZ; ; obtained
from the static analysis into E¢12) and eliminating the common
factor sinwt+ ¢) results in an eigenvalue equation of the form
[KI{H}=w?’[M]{H} (13)

where[K] and[M] are the stiffness and mass matrices, respec-
tively.

For each choice op and g, one nonlinear cubic equation is The solution to the above equation gives the natural frequen-
obtained, giving a total afi, X n, equations. These equations wergjes.

solved using a Newton-Raphson iterative scheme and the results

are discussed later.

3 Vibration Analysis
Let the dynamic out-of-plane displacement be
w(Xx,y,t)=W(X,y)sinwt+ ¢)

= > Hpnsinmax/a)sinnmyy/b)sin(wt+ ¢).

The dynamic compatibility equation for small amplitude vibra

tions is
VA = EN(2Z 3 W 5y = Z yyW 55— Z W yy)-

The in-plane boundary conditions are

(8)

9)

fxy(ory): fxy(avy) = fyy(ovy) = fyy(avy) = fxy(X,O): fxy(xxb)

=f(X,0) =Ty (X,b)=0.

It can be shown that an Airy stress function that satisfies Eq

(9) and(10) is

(10)

f:<Eh/4>Z 2 2 2| (Stmnkit Samnki+ Samnki+ Samnk)

X(Zk,IHm,n)Sir‘(wt+ 9{7)

where
Simnki= Cs cog (m—K)rx/a)cog (n—1)wy/b);

Somnki= Ce €O (M—K) mx/a)cog (n+1)wy/b);
Ssmnki= €7 cog (m+ k) mx/a)cog (n—1)wy/b);
Simnki= Cg €O (M+K) mx/a)cog (n+1)wy/b)
in which
¢cs=0 if m=k and n=I| otherwise
cs=—(kn—mhZ((m—Kk)?/r+r(n—1)?)?
ce=(kn+mD2/((m=K)?%/r+r(n+1)?)?
c;=(kn+mhZ/((m+k)%r+r(n—1)%?

cg=—(kn—mD)?/((m+k)?/r+r(n+1)?)2.
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4 Results and Discussion

Numerical solutions to Eqq7) and (13) were obtained for a
square plate subject to uniaxial in-plane loading, for various val-
ues of load ratio ¥=N,/N,.) and initial imperfection. The re-
sults presented here are for an initial imperfection in the form of
the fundamental vibration mode of a plate given ky(x,y)
= uoh sin(mx/a)sin(my/b). The parameter.q is a nondimensional
initial imperfection. For the single term analyses, the function
sin(mx/a)sin(my/b) was used for botlhw and z. For the four term
analyses, the first two symmetrical sine functions were used in
both x andy directions(i.e., singx/a), sin(mx/a), sin(zry/b) and
sin(3my/b)). The nine term analyses included the terms sim(&)
and sin(ary/b) also. The results are presented in terms of the
following nondimensional parameters:

3.5

3

n

Central Displacement Parameter
(5]
n

[

n

in

0 I T T T ;
0 0.5 1 1.5 2 2.5 3 3.5 4

Load Ratio
Single Term Four Term Nine Term
to=0 —— —— —8—
Be=05 [~ O~ - %= - 8-
=10 |[--0O-- R B --0--

Fig. 1 Load-displacement relationship
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Natural Frequency Parameter

Load Ratio
One Term Nine Term
Mode | Mode | Mode 2 Mode 3 Mode 4
-a .. -_ — - .E_ -
Hg=0
u()zo's + _A_ = A - -A_ - -A_ s
Hy=1.0 —_—t— —— *- — - — - -

Fig. 2 Load-frequency relationship for the first four modes

central displacement paramejer z(0.5a,0.5b)/h and
natural frequency parameter,=w,/{; where w, is the nth
natural frequency of the loaded, deformed plate &dis the

by

Q,=7%((1/a%) +(1/b?))\D/(ph).

Computations were limited to the positive roots of the static
displacement only. Vibration about the snap-through equilibrium
configuration has not been considered here but these results may
fundamental natural frequency of the unstressed flat plate giviea generated using the computer program developed by the author

currently available athttp://www.geocities.ilanko/vibration.htm

From Table 1 and Fig. 1 it can be seen that the discrepancy

between the four-term and nine-term solution fois very small,
Figure 1 shows the variation of the central displacement parathe worst being less than 1% for=4 andu,=0. However, the

eter with load ratio, for initial imperfection valuegwf) of zero discrepancy between the single-term and nine-term results is no-
(initially flat plate), 0.5, and 1.0. Figure 2 shows the variation oficeable, particularly fory>1, and reaches about 5.7% fpr=4
the natural frequency parameter with load. Some of the results ared nq=0.
also given in numerical form in Table 1.

From Fig. 2 it may be observed that for loadings below the

Table 1 Some numerical results

M w1 /Qq w, 1y w3/ wa Qg

Load Single Four Nine Single Four Nine Four Nine Four Nine Four Nine

Mo Ratio Term Term Term Term Term Term Term Term Term Term Term Term
0 1.0 0.000 0.000 0.000 0.000 0.000 0.000 4.000 4.000 4.899 4.899 8.485
4.0 2.965 2.802 2.804 2.449 2.388 2.377 3.958 3.941 6.552 6.544 8.289
1.0 1.0 1.662 1.643 1.643 1.577 1.547 1.547 4.708 4.707 5.521 5.520 8.685
4.0 3.269 3.115 3.117 2.757 2.676 2.661 4.344 4.331 6.844 6.834 8.405
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8.399



lowest nominal buckling load, the difference between the singlesental natural mode of vibration of the flat plate with a central

term results and the nine-term results for the fundamental fréeflection equal to the plate thickness. The determination of the

guency is not noticeable on the graph. This discrepancy beconedfect of imperfections of arbitrary shapes would require a multi-

noticeable at higher loadings, and for=4 and uy=1.0 it is term approach, as do the calculation of higher natural frequencies

about 3.6%. The effect of initial imperfection corresponding to thexcept when the imperfection is of the same shape as the mode

fundamental natural vibration mode of an unstressed flat plate onder consideration.

the higher natural frequencies is worth noting. For example, for

y=4, A, changes from 3.941 for a flat plate to 4.331 fog

=1.0, an increase of about 10%. This is comparable to the coriseknowledgment

sponding Change i Wh.iCh _is abc_)ut 12% which s_hows tha_t in_ The method presented here was first used by the author in a

general a multiterm solution is desirable since any imperfection fyejiminary study of vibration of slightly curved unstressed plates

practice is unlikely to be of a pure vibration mode. during his doctoral studies at the University of Western Ontario,

Conclusions Canada. The auth_or_is thankful_ to his Ph.D. supervisor Emeritus
Professor S. M. Dickinson for his advice and encouragement dur-

The natural frequencies of in-plane loaded simply supporteédly this preliminary study.

rectangular plates with initial out-of-plane geometric imperfection

have been calculated using a multiterm Galerkin’s method in

which the Airy stress functions that exactly satisfy the compatibiReferences

ity equations for static and dynamic analyses were used. The rg1] Hui, D., and Leissa, A. W., 1983, “Effects of Geometrical Imperfections on

sults show that the discrepancy between the single-term results Vibrations of Biaxially Compressed Rectangular Flat Plates,” ASME J. Appl.

presented by Hui and Leis$&]| and the multiterm results, for the Mech.,50, pp. 750-756. ) ) _

fundamental natural frequency of a square plate, is wiihin abou? FaTglr . 1, 1993 e ey Mrpiuse Sbrstors of Ceonetical

3.6% for uniaxial loadings of up to about four times the nominal  pepartment of Mechanical Engineering, University of Canterbury, New

buckling load, for imperfections having the shape of the funda- Zzealand.
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The Isotropic Ellipsoidal Inclusion
v ranman | With @ Polynomial Distribution of
e | Elgenstrain

800 Chrysler Drive,

 Auburn Hills, MI 48326-2757 We consider the problem of determining the elastic field in an infinite elastic solid induced
e-mail: mr117@daimlerchrysler.com by an ellipsoidal inclusion with a distribution of eigenstrains. The particular type of
Mem. ASME distribution considered in the article is characterized by a polynomial in the Cartesian

coordinates of the points of the inclusion. Eshelby showed that in such a situation the
induced strain field within the inclusion is also characterized by a polynomial of the same
order. However, the explicit expression for this polynomial seems to have not yet been
reported in the literature. The present study fills this gAPOI: 10.1115/1.1491270

1 Introduction Dyson theorem([17,18) on the Newtonian potentials of hetero-
S . . eneous ellipsoids and some of its further developments by
The problem of an ellipsoidal inclusion undergoing a stress-fr ahman(19]
eigenstrain trar!sformati_o(t_ransformation str_abnin the abs_en_ce Apart frorﬁ the purely aesthetic appeal, the solution of the prob-
of th(_e _surroundlng matrix, is by now a cl_assmal pr_ob!em in lineg, m has considerable practical significance. For example, although
glastlcll‘ty. The presence of the surrounding material induces adglimany practical applications, the eigenstrains may not be explic-
tlona_l constra_lned strains in the inclusion. _Eshelﬁy_—:%] flrst_ itly given in the form of a polynomial, but they can beiformly
considered this problem and showed that if the eigenstrain 4gproximated in thévoundeddomain of the ellipsoid by a poly-
given in the form of a polynomial of an arbitrary order in thenomial, as long as the function characterizing the eigenstrains is
Cartesian coordinates of the points of the inclusion, then the agbntinuous The basis for this statement has its roots in a theorem
ditional (induced strain field in the inclusion is also characterizedn the theory of functions, known as Bernstein’s theorga0]).
by a polynomial of the same order. We shall refer to this result 8 realize such an approximation practically, one can resort to
Eshelby’s polynomial conservation theore®ince the publication some fairly well established algorithms, such as the least-squares
of Eshelby’s work, considerable extent of research had been dared Marquardt-Levenberg methods. Thus, the solution of this
over the past several decades on different aspects of this probl@moblem is capable of extending our ability to analyze problems
Several authors, namely, Walpdk], Kinoshita and Murd5-7], concerning ellipsoidal inclusions with nonuniform eigenstrains.
and Asaro and Barnef8] proved that this theorem also holds forAnother area where the solution of the present problem might be
an anisotropic medium. Muf®,10], Nemat-Nasser and Hdri1], useful is related to dynamically transforming ellipsoidal inclu-
and Khachaturyaf12] have given exhaustive account of thesions. It is well known that closed-form solutions of such prob-
available results in this area. Furthermore, it is Mura who is réems can be developed only for a handful of configurations, such
sponsible for giving currency to the terminology “eigenstrain.@s, spherical[21,22)) and cylindrical ([23]). It is probably not
Much of the recent interest in this area is due to Markenscoff af@ssible to derive a closed-form solution for the problem of a
her co-workers[13—16]), who were able to prove a Conjecturedynamlcally transforming eII|p30|d_W|th three unequal axes. How-
of Eshelby’s that ellipsoid is the only configuration having th&Ver. for low frequency or short time ranges, the solution of the
remarkable property that the stress field inside an inclusion 'g{ettregf":‘irr‘nge v?/ﬁﬁatrr]]deege?itﬁ fé’rrdn;?'tgﬁ‘]’j"egesiﬁgetf]énctgﬁe"f’s";‘)‘(’;é‘i‘#gn'
uniform eigenstrain is constant. e e ) s
Returnir?g to Eshelby’s polynomial conservation theorem, Muglastostatic one. The problem is thus reducible to a potential one
[9] has outlined a general method, based on multipole expansiéﬂ that the results of SO.IUt'O.n O.f thg eIastogta’nc counterpart of the
of quantifying the additional strain field within the transforme r_bblem for a polynomial qlstnbutlon O.f eigenstrain can be ap-
ellipsoid with a polynomial distribution of eigenstrain. Howeverplled to deduce an approximate analytical solution. Furthermore,

in practice, it is hardly possible to carry through his analysis bg_y retaining a sufficient number of terms in such an expansion and

i 2 Using various perturbation series improvement techniques, such
yond the first few terms. To the best of the writer's knowledge, r.]zgs, those based on exploiting the benefits of Domb-Sykes plot, as

explicit expression for the polynomial characterizing the straific ~ussed by Van Dvke in a lucid articlE24)), it might be pos-
field within the transformed ellipsoid has yet been reported in t le to impr)(l)ve theyconvergence of such a‘serieg solutign of the

literature. The purpose of the present article is to fill this gap, hiem yp to a significant level to cover intermediate and even
Specifically, we deduce the explicit expression for this polynomi Iigh-frequency/time regimes.

in terms of some integrals, which we call the potential integrals, \ye pegin by introducing the notation that we shall make use of.
and are able to concatenate the results into an algorithmic fofffe symbol is used in the article to mean the triplet of Cartesian
usable for polynomials of arbitrary orders and especially suite@ordinates X, ,x,,x3) in the three-dimensional Euclidean space
for symbolic manipulation by computer. The method employed 93 Repeated indices are used to mean summation over 1, 2, 3,
deduce the results presented in the article is based on Ferrergntess stated otherwise. The symbpls used to mean the opera-

- tion of differentiation with respect tg, . The norm of the vectox
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  jg designated bW|

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 52 The Derivation

2001; final revision, Dec. 10, 2001. Associate Editor: D. A. Kouris. Discussion on the . .

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department ofIt can be ShOWF(SGE, for mstance{,g]) that the dlsplacement

Mechanical and Environmental Engineering University of California—Santa Barbafdeld in an infinite elastic solid caused by an eigenstrza’ﬁr(x)

Santa Barbara, CA 93106-5070, and will be accepted until four months after fingjstrihuted within an inclusion occupying a domafhe RS is
publication of the paper itself in the ASMEOURNAL OF APPLIED MECHANICS. . .
given by the expression
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Y|4
a;

y1\?

ya|'
a;

as

3 2 I-1
i(x)=—C; Gii (x=y)ek (y)dy, 1 Ny/(a !
ui(x) kaan |J,k(x Y)emn(y)dy 1 (OLY; qr(x) |X y|( 2 Iz)
whereG;; = G;; , dy=dy;dy,dys, Cjmn is the elasticity ten- (8)
sor andG;;(x—y) is the elastostatic Green’s function, which cor- |n the second equat|on ii7), it should be assumed that
responds to the displacement response of an infinite elastic rge- =0 &* =0, g* =0, for V(i,j=1,2,3k+I
dium at the poink, due to a point load applied at the pointThe .. 1,51' k=0l '21(‘)()71' Lkl o1 '

eigenstrain-tensasf, (x) is symmetric. In what follows, it willbe  The reader would notice that E¢B) characterizes the Newton-
assumed that) is an ellipsoid with three unequal axes(i ian potential of a distribution of mass whose mass density is char-

=1,2_3)@;>a>ay), ie., acterized by the function
8 3 X -1 0 q ;
Q={xeR%| >, x¥a’<1{. N X7 X2) [ X8 —012--
zl i/ 2 |2 ) \ay) \ag) (I,p,q,r=0,1,2--).
For a homogeneous isotropic material, we have 9)

s : : This question was studied by Ferr¢is] and in complete gener-

Cikmn=AFjicOmnt #0jmin 14 9jn dicm ality by Dyson[18]. In particular, the latter showed that the matter

8j 1 distributed within an ellipsoid with three unequal semi-a&gs
ai&j|x—y|, (2) =1,2,3) @;>a,>ay) such that the mass density varies as

Gij(x=y)= Arp |x—y|  16mu(l-v)

, -1
whered;; is Kronecker’s delta\ =2vu/(1—2v),u are the Lame _ 2 X (X X2 Xs
constants, ana the Poisson’s ratio of the material of the solid. a(X)=0g| 1 o |2 a;'a,’ ag)’
Putting (2) into (1), we obtain
W) X (y) n>0, oy is a constant, (10)
Ui(X) = 7,4, f dy |;m ;) J dy |);’ | (f(x) is a sufficiently smooth functigrproduces outside the ellip-
y y soid a harmonic potential(x):
gh(y) Ve k() © © m+5,,m
+773Xk‘9i‘9jf dy|J vl — 1730id Jf dy |XJ v ®3) V(X):Uoﬂ'aJ dlﬂiz Zrlr\]/l—w
« \/szo 2" Ml () mea
where
1-2v 3—4v 1 a§+¢'a§+¢;’a§+¢ )

Mm=q_1_.5 "2~ — N 7W3= — 3 4)
Srd=v)s T emdmn T AT T wherea=ajaay, (n)is= 7+ 1)(5+2) . (p+m)=T(y
In what follows, it is assumed that the eigenstraif(x) is +m+1)/I'(») (I(:--) is the gamma functionis the Pochham-

given in the following form: mer’s symbol, and
N 3 2 -1 p q P 3 24 2 2 3
Xl X2 X3 a, lﬂ (9 XI 2
*(x)= * = = E =2 D=, — —, M=1-)> ——, 24
e (%) p+qz+r=0 8”pqr( 2 ﬁ) a;) \ap/ \ag “oal o zl ai+y 1:[ P
12)
(I=1,2-), (5) . - .
and « is the positive root of the equatibn

where,si’jpqr are known dimensionless coefficients. Equatibn 2

represents a polynomial i of orderN+ 2| —2. Additionally, for 2

I=2,3,4;--, this polynomial has the property that it vanishes at 1- = a Ta (13)

the bounding surface of the ellipsoid. It is worth mentioning in

this context that the method employéeerrers-Dyson theorenis The potential in the interior of the ellipsoid can be found by
also capable of taking into consideration the special case wheuiting =0 in Eqg. (11), which follows from Ivory’s theorem.

I =0, in which case the eigenstrains are singular as the boundiaguations(10) to (13) are also valid forp=0, provided it is
surface of the ellipsoid is approached. It can be shown that tiissumed that{1)!=1.

case leads to violation of compatibility of deformations and as It can be easily seen from E¢L1) that when the mass density

such must be discarded. is given by(9) andxe Q) (i.e., «=0), the infinite series if(11)
Putting (5) into (3), we obtain conveniently terminates as a result of successive differentiation
- and reduces to a polynomial inof orderp+q-+r+2l, implying
Ui(X)= 71T Wom= 720, T + 13xied 0, T = maaa; 05 OT ! that within the ellipsoidI'}}"', T} reduce to polynomials ix
(6) of ordersN+2l andN+ 21+ 1, respectively. Thus, it can be seen
where the following notation is introduced: from Eq. (6) that the displacement field within the transformed

ellipsoid is characterized by a polynomial inof order N+ 2|

N —1, and hence the strain field by a polynomialxrof order N

Fi’\j"lz 2 Si*qur O Vp‘arv + 21— 2. For the particular case where 1, this leads to the con-
p+qtr=0 clusion that if the eigenstrains within ellipsoid are characterized

N by a polynomial inx of ordersN, then the induced strain field
(k)fi'\jl,l: E gﬁpqr (')Vp+5 o es within the transformed ellipsoid is also characterized by a poly-
p+qtr=0 CEERRCR S nomial inx of the same order. These were essentially the lines of
N4l arguments that led Eshelby to arrive at the polynomial conserva-

tion theorem.
:P+qE+r:o Sﬁi,pfﬁkl:qffskzvf’éka (l)VE)‘a)r @)
1In fact, it can be showisee, for instancd25]) that forVxe R3\Q, Eq.(13) has
and only one real positiveoot, the other two roots being complex conjugates.
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Central to our derivation is the following result recently obtained by Rahihéh

B = 2i+8(p)y 2j + 8(q)y, 2k+ &(r)
OV () = 7-rap|q'+r|(+l -! S (_l)iﬂ-Jrk'—4i+5(p)/2,j+5(q)/2,k+§(r.)/2X.1l Pixg! T X
ar 2pratr i+jTk=0 (B—i=]j—k)!

[p2] [al2] [ri2] = 2k’ + 5(p)agk”+ 5(q)a§k”’+ 8(r)

= " " a
% 1 K +K'+K" =K' +8(p)2K"+ 8(q)/2K" + 5(r)[291 : i
2 k”EO szo (-1 ([p/2]—k"H 1 ([a/2] —k")H([r/2]—Kk™)!

par (a)
Hl]kk’k”k’"l|+k’+§(p) j+K"+68(q), k+K"+8(r) (14)

where B=I1+[p/2]+[q/2]+[r/2]([p/2] is equal to the integer which closed-form expressions for the potential integrals can be
part of p/2), and deduced for alli,j,k=0,1,2;--, in terms of elliptic integrals of
the first and second kinds.

= —— 1 , An interesting feature of Eq(14) is that each single term
T 20)1(2)) 1 (2k)! xPxx5 yields a polynomial inx of orderp+q-+r+2l. Further-
(20 +2D)1(2) +2m)! (2k+2n)! more, each indiviqlue_ll power of;,X5,Xz in aII_ the terms in the
ijkimn= i - , (15) resulting polynomial is odd or even, depending on whetherr
(i+DH(j+m)!(k+n)! are odd or even, respectively. For instance, the density character-

ized by the functiorx?x%oxg generates a potential characterized by
a polynomial inx of order 28 in which the powers af andx; are
and only odd numbers, while that of, is either zero or even numbers
dy only. Specifically, the resulting polynomial would contain terms of
1= (16) the formx2'" x5t wheret, +t,+13=0,1,2;+,13.
] \/ + )2I+1(a + )2]+l(a + )2k+l’
(aj+y 2ty ' Following the above arguments, Rahn{d®] showed that for

and (i) is an integer-valued function such tha¢i)=0 if i is xe (), equations in(7) can be reduced to the following explicit
zero or any even positive integer, adi)=1 if i is any odd Polynomial forms:

I |]k|mn_Hi+5(p)/2,j+5(q)/2,k+ 8(r)/2,1+8(p)/2,m+8(q)/2,n+8(r)/2s

positive integer. For points lying in the interior of the ellipsoid, N+2l
should be set equal to zero. N = FilyPyayr
In [20], integrals(16) are defined as thpotential integrals of b g P

the ellipsoid Furthermore, they are defined as internal potential
integrals and external potential integrals of the ellipsoid, depend- ~
ing on whethexe Q (i.e., a=0), orxe RA\Q (i.e., a#0). In the o= > B (R xExEx (17)
sequel, the interior potential integralgg will be denoted simply prarr=0

by lijc . In Section 3, recurrence relations are given by means where

N+21+1

i ma(l—1)!(—1)Po «/ [2t,+8(p)]I[2to+ 8(a) ] [2ts+ S(r)]!
par™ 23 T A@ I giy] i TG 1 4 Lyt — Bo)! X j,8(p)+2ty,6(0)+2t,,6(r)+2t,

t t t
L2 & s [P+ 2K+ B(p)1[a+ 2K+ 8(q) ]!
k' +K"+k
X2 2 2 (-1 G-k (G- K (G K]
[r+2K"+ (1) !
T2k = a(p) 112K + S(Q) 11 [2K"+ 30 N[ pl2] + K + a(p) I [a/2] + K+ S(a) N [r/2] + K"+ 5(r) ]

2k k// 2k/// 0
X agk AP QB ) B | ) (s a2 K+ B2k (18)
T
In Eq. (18), the following notation is introduced: Expression fotFl; can be easily deduced froR);, by the
[ﬁOlv'”BOv'”v’y; if /302|] p . q . r following substitutions:
7= : i o Bo=|3|* ]3|t 3] N+1
< 2 2 2 =
0,1;--,y; if Bo=I == —— _eg;rl’
N N
Y= 2| Car £1),2,+ 8(p) 2+ 8(0) 2 (1)
+q+r+N)+ + +8(r)—
v _Op+atr+N)+48(p)+4a(q)+6(r)— &(N) _5(p) B 2, 5(P) By 2yt Q) B Bt )~ g
par 2
Putting (17) into (6), we obtain
+6(q) + 6(r) = 6(p) 6(q) — &(q) &(r) — &(r) o(p) Na2l-1 N2l 2
— 8(N)3(p) = 8(N) 8(c) = 8(N) &(r) +25(p) 8(c) S(N) W0= 2 Apeddan 2 i,
+26(q) 6(r)5(N)+25(r) 8(p) 5(N) (19) (20)
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where +2p+lqr |1)(p+1)+(zlkq+1r512+2jkhl+lr5i2)(q+1)
| | |
AIpqr nl[(p+1)FB’P1qr5.1+(Q_+1)FE‘311r5.2+(r+1) +(2pqr+151+2 qr+15|1)(r+l)]XgX2X3 (22)
XFR 183l = 1ol (p+ D g+ (Q+ DF g+ (r
3) =1kl
+1)FI par+1l” 773""k[(p+2)(k)':p+2q r In using Eq.(22), special attention should be paid to two pos-

sible circumstances. Specifically, if, in E@L8), it happens that

(K TE2k,! (k) '
O+ D TR g, (D) +1q r+1](PF1) 8 ¥<0 or y< 1, the corresponding!:'s should be assumed equal

par

— pad +1)(WELI +(g+2)WE2KI to zero. ) ) o

73l (PH D) g1, (AF2) P Fp gy So far we have been concerned with the induced strain field
+(r+1)(k)'~:,3)kdl+1r+1](Q+ 1)5;, within the transformed ellipsoid. It is also easy to calculate the

' strain field outside the ellipsoid using the present approach. This is
— paa(p+ 1)(k)'~:;1)ﬁ|1q (gt 1)(k);:2 K ire1 based on the observatigh9] that Eqs(17) and(18) also valid for
a, 3 . . 5
~a] xe R°\(), provided the internal potential integrals

+(r+2) RN LI +1) 8, (21)

Shar= el (p+2)F g+ (A+ DF R o,
H(r+ DR el (P+ D) 81+ el (p+ DFEEY ooy
H(Q+2)F o+ (T DF 1,1 1(a+1) 8
+ 73l (p+ DS g (A DF R 1,

+H(r+2)F 5 2l(r+1) 8.

l (p+8(p))/2+k’,(q+8(a))/2+K",(r+ 8(r))/2+K" s

are replaced by the corresponding external ones, i.e.,

R i . S (a)
Hence the strain field within the transformed ellipsoid is given by I(p+ S(P))12+ K", (q+ S(q))/2+ K, (r + 5(r)) 12+ K" *
N+21-2
2ei= >, [(Afligedit Abliq )P+ D)+ (AGl 1,6
B p+q+r=0 priart] priart parirt Putting then Eqs(17) and(18) with these changes in{®), it is

easy to calculate the displacement field and hence the strain field

il ) i )
+AP a+1r02) A+ D+ (Apg 183t Aplre18i)(T+1) guiside the ellipsoid. Care now should be taken of the situation

N+21-3 that unlike the case wheres (), the external potential integrals
+Elplqlr+ El' lr]X XIXG+ X E [(Eg(Jrllqr are dependent omthrqugha. Therefore, in gpplylng the operator
p+qtr=0 d; , the following relation should be taken into view

(a)
ai(XPx3xg| (p+ 8(p)) 12K (q+ 8(a))/2- K", (r + 8(r))/2+ k")

- - Pyd—1yr Py Oy —1 (a)
=(px} X2X35ip+qX1X2 X36iqFIXXaX3 “6in)l (0'y spyy2skr (a+ (@) 2+ K, (1 + 8(r))/2+ K"
XXX

- &ia.
’ n+1l .2 +o(r)+2k"+1
\/(a§+a)p+5(p)+2k +1(a§+a)q+5(q)+2k (ag+a) o

The resulting expressions for the displacement and strain fields— R, in the relevant equations. The potential integidl§) can
outside the ellipsoid are therefore extremely involved. A full deribe easily evaluated in closed form. Thus, for this case, the strain
vation is left to the interested reader as an exercise. field within the transformed sphere is still given by E¢&l) and

We close this section by considering the problem of a sphem@lz) with Fil.!given by
inclusion with radiusR,. Solution of this problem can be easily par
deduced from the solution of the ellipsoidal inclusion by Iettlng

i mR(1—1)!1(—1)¥0 4 [2t,+ 8(p) ][ 2t,+ S(q) [ 2ts+ 8(r)]!
Fpéfzzﬁw)”(q)”(”p!q!r!wm—f ATt G Gy — Bg)l A2 200 2t

L2 oo LPF2K 4 S8(p) Mg+ 2K+ 8(g) ]!
k" +k"+K
x2 2 2 - (=K )1 (L= K') (T,—K")!

k'=0 k"=0 k"=0

[r+2k"+ 8]
T2k T S(p)IN[2K T S(@) 112K+ S(N TN LP/2] + K+ S(p) TN [[/2] + K"+ S(e) II[LF/2] + K+ o(1)]!
1
~ RET9* T (p+q+r+8(p)+8(q)+ 8(r)+2k'+2K"+2K")
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3 Examples where

3.1 Constant Eigenstrain. As the simplest application of (1-2v)a 3aa}
the results obtained in this section, let us consider the case of S~ 4(1-v) 1007 4(1-v) 200,
constant eigenstrain, i.eN=0, |=1. This case was studied by
Eshelby[2]. Solution for this case can be obtained from our so- S1117= S1121= S1115= S1131= 0,
lution by putting 5
) o s _—(1—211)&1I N aa; |
=1, siqurzo (i,j=1,2,3 andp+q+r=1), (23) 1120~ 4(1-v) 100 4(1-v) 110

into the relevant equations.

2
Thus, using Eq(22), we obtain Spiar A(léLl ZV))a|100+ 4(?’13,,) | o1,

2= Algedin + Aogdi s+ Agiodi2 T Abiodio + Aggidja+ Abidia
. (1-2v)a ( ta )a
+Egéé+zgéé- (24) S1217= S1201= m('mo lo10 + ﬁlllm
Writing Eq. (24) explicitly, we obtain

a1l 111 21 221 a3l 331 S1211= S1215= S1220= S1225™ S1231= S1237= S1235= 0,
enn= Aot 2006, €227 Agiot 2000 £33~ AoprT 2000

L S S (1*2v)a(| " D+(a§+a§)a
1313~ 213317 g1 _ .,y 11007 foo Q1 _ . 101
10 e1= (A Byt Al S+ 32, 81— B(1-1)
25
1 (25) S13117 S13157 S1325= S1325™ S1331= S1337= S1335=0,
31, v31,
€137 83175 5 (A 350 Agart 2650+ 2560) (1-2v)a (a3+ad)a
S305= So337~ B(1=v) (Tor0tTooD + 8= lo11,
1
_ AZ, 1, 5231, 5321
825~ 830~ 5 ( oo+ Adort 2560+ 2560). S2311= 2312 S$2315™ Sp321= Sp327™ Sp331= S335= 0,
where the relevan\’s andX’s, calculated as per Eq$21) and —(1-2v)a aa’
(18), are given by S 21— lo10t 21— I110,
(2ma) " A1po=— 7€ mmood 100" 72 T100d 100 (1-2v)a aa
+ m3(3a%e T100d 200+ 358 3200d 1107 A5 33000 100 S222= 4(1—v) loso® 4(1-v) 020, (28)
(2ma) 3550 =— 73&3100d 100, —(1-2v)a aa’ |
_ 233~ — o0t — l110,
(27a) "' Afi6= — n1& mmood o10™ 728 3200d 010 4(1-v) 4(1-v)
+ 73(@38¥100d 110+ 3858 3200d 020+ A58 3300d 01 $2215= $2221= S2215 S2231= S2203= Sp237~ 0,
2
(2ma) " *2555= — 73832000 010+ s, =_(1_2V)a| T aa |
- 311 4(1_1/) 001 4(1_1/) 011
(2ma) P AS5i= — 718 hood 001t 728 3300d 001 ,
—(1-2v)a aa
+ pa(ader +ase% +3aet , — ( + 2
73(a7€7100d 1011 828 3200d 011 3€3300d 002 Ss307 A1—) loo1 A1=) lo11,
2ma) 153 &3 : 26
(2ma) M2 855= — 7383300d 001 (26) (1-2va | as2 |
(27a) P AT5= 728 T200d 10T 73 200d @1+ 85) 110, Ssass™ 4(1-v) oo+ 4(1—vp) O
(2773) N lAéEl.lO: 7728’::200(’ 010+ 7738I200({ a§+ ag)l 1101 33312: 33321: 53313: 83331: 53323: 83332: 0.
(2ma) " 3355= — 738 200d 100 The elements 0§;j,; constitute a fourth-order tensor called the
. Eshelby tensorAll other components of this tensor not listed
(2ma)” 2ooo — 73812000 010+ above may be found by using the obvious relati®)g = S ,

Sijxi = Sijik - Equations(28) coincide precisely with Eshelby’s so-
lution ([1-3,9), and this renders credence to the correctness of
(2ma) LA S = 728 %a00d 001t 738 a00d @5+ a2) | 101, our analysis.

3.2 Linear Eigenstrain. As the next example, let us con-
sider the case of linear eigenstrain. Specifically, let us assume that

1431
(2ma) A T35= 726 Ta00d 1007 738 a00d @5+ 85) 1101,

(2ma) 1255 000= "~ 1738 3300d 100-

(2ma) 3= — 93e%500d 001, ,Jpqr =0 (i,j=1,2,3), wherep+q+r=2. Furthermore, without
131 . . I loss in generality, we may assume tl@%r:o (i,j=1,2,3) for
(2ma) ™ "Agio= 722300 010T 73 23004 82+ @3) 011, p+q+r=0, because this case corresponds to constant eigen-

strain, which we have already treated.
Writing in explicit form, the induced strain field for this case
can be written as

S1421_ 2, .2
(2ma) ™ *Ago1= 728 3300d 001 73833004 82+ @3)| 011,

(2ma) 125 000 — 713 3300d 010

(27Ta)71283'0127773833006001. =CH+C X1+02X2+CgX3, (|,J:1,2,3) (29)

Alternatively, Egs(25) and(26) can be cast into Eshelby’s form: Here the c_oefficients'g are given bys;; in equations in(25) with
the only difference that now in evaluating the relevars and

&ij= SijkIki000s (27)  s's, N should be put equal to 1. It turns out tiedt=0. At the end
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of this section we will elaborate wh;z”—O for this case. The

other coefficients, namel@’l ,02 4, are given by

11,1 1

1 11 1 12,1
2(A200+ 100/ 110+ 010+2100 '

el 11, 5181 (22 22,1, w211
Afgr+ 260+ 2100 AL+ 253+ 2508,

22,1
010/

22__ 22,1 223,1

2=
=2(Agp+3 A+ 35S

3 33,1 3 33,1 32,1
101+ 2 100 » 011+ 2010 + 2001 '

3P =2(Adn 250D,

12,1 21,1 11,1
_(2A200 110+2100+22100+2010 '

21 1+222,l

12,1
_(A100+ 2A020+ 22010 +3 010 100/

_ 121, w211, 5231
—_(A101 AGi+ S+ S SR 263 (30)
_ 131, o531, 1Lk
—(ZAzoo AT+ 3105+ 2330+ 260D,
131, v32,1, w321, v 12,1
(A100 AGi+ 3 o3+ S8+ 2355+ 385D,

13,1 31,1 33,1
(A101+ 2A002+ 22001 + E001 + 2100 '

3T 231, v32.1, y3L1, y2Ll
= (A ot ALt SR S S8+ 250,
23,1 32,1, 22,1
(2A020 A+ S8+ 2580+ 522,

231, 321, v33,1
(A011+ 2A 50t 2350+ o5+ 383,

The relevantA’s and X’s entering into Eqs(30), calculated
using(21) and (18), are given by

(a) " AZ50= — 371818 hmiod 2007 723181100 200

+8,87201d 1107 @38 13001 100)
— 373l (azeT1100t A28 12010t @38 13002 | 200
—(5a3eT110d s00T 8382014 210™ 838 13001 200)]
+3738185(81€ 120107 32832100 | 210
+3738185(a18 13001+ A3€ 33100 | 2015

(27a) " '3155= — 73(3218T110d 200+ 828 T201d 1107 A3 Ta004 100

(2ma) " *A3io= — @2 m1& mrpad 110 72(818 2100+ @28 11010 110

+3a3a,73(218 1010+ 32812100 210

— nalare3110d 1110~ 3831 10 + 82832010

X (1110~ 3a3l 120 +@3835004 | 110~ 851110 ]

+ 738583828 33001+ 838 33010 110,

—-1511,1_ * *
(2ma)”*2515=— n3(@1812100T 2611010 110,

1121
(ma) X i55=— 73(3a181210d 200+ A28 3201d 110 @38 33004 100)
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(2ma) " *A 5= — 71832 mmood 101 72(218 3100 @38 1000 101
+3m32185(18 11001+ Q3813100 | 201
— nalareTa106 | 101~ 321 200 + 2283010
X (1101~ @5 119) + @38 33004 | 101~ 3851 107)]
+ 713828388 35001+ 238 33010 111
(2ma)~*Xgpy=—
(2ma) 2 155=

(27a) 1A=

73(A1833100t 3811000 1015
— 173(32181310d 200+ @28 3301d 110 @38 33004 100
— a1 718 mmuod 1101 72(21€ 321061 22812010 | 110
+3a18,73(818 120167 @28 32100 | 120
— m3laseTi10d 120~ ail 210
+aze 2014 1 110~ 3251 120 + A3 33004 110
—3ajl 119 ]+ a123373(a1 o001 33833100 110,
(2ma) '3 5=

(2ma) '3f=

— 713(818 32100+ 828 12010 | 110,
— 3(@187110d 110+ 3828 3201d 020 @38 33004 01
(ma) "' AZ5= — 371208 hod 020+ 72(2187210d 110
+ 32283510 020t @38 33004 012) + 3732182(818 71010
+8,8721001 120~ 373[ @18 2104 L 020~ @31 120
+8,832014 1 020~ 535 030 + 83 33004 | 020
—3a3l 021) 1+ 3738,83(8z¢ 33001+ 3¢ 3300101 021
(27a) '2815= — n3(a18 32100 1107 3828 5201d 020 A€ 33004 010)
(27a) "AGH= — mage hpodl o1t 72(22833016+ 838 52000 011
+ n32183(a18 11001 82613100 111
+ 37738285(828 350011 838 33010 | 021
— nal@asetarod | o1~ a5l 110 + 22835014 o1
— 383l o20) + 838 53004 | 011~ 3831 012)]
(2ma) " 125i=—
(2ma) " *2535= — 73(a187a10d 1107 3828 5301d 020+ A3 3004 010)

(2ma) A=

* *
73(82833010T A3€ 22000 | 011

71838 mmod 1017 72(81€33100T @38 13000 101
+3m3a183(a18 13001+ A3833100 | 102
— nal@aseti0d) 101~ 3831 200) + @8 o014 101
—ajl 13) +azs 00| 101~ 3851 109)]

(2ma) 13 B4=

(2ma) Agh=—

— 173(Q18 33100 @38 13002 101
82718 mo1d 011+ 772(82€ 330101 3 23000 | 011
+ 738182(Q18 71016t A28 12100 111
+ 173883(A28 33001+ A28 33010 | 012
— n3laeT210d 011~ ai' 117)
+8,835014 1 011~ 3251 020)
+a3833004 | 011~ 32531 012 ]
+373(828 33001 838 33010 | 0121

(2ma) 3=~

(31

* *
73(28 33010 A3€ 23001 | 011
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(2ma) 12 ¥=—

(ra) A S 062=

73(818Tp10d 101+ 82 3201d 011+ 323 33004 002
— 371838 mmpodl 002t 72(21€1310d 101+ @2€5301d 011
+3a383500d 002 — 373l @18 Ta106 | 002~ 831 102)
+8,8 330141 002~ 851 012) + 3833004 | 002~ 5831 009)]
+37m3185(a18 11001+ A3€ 13100 | 102
+3738283(228 52001+ 23833010 | 0120
(27a) "'I55:= — na(area10d 101 2283301 011+ 33833001 002
(a) " AZp0= — 71828 mord 110+ 72(32187210d 200+ 328 3201d 110
+ 83833001 100) T 3732182(Q18 11016+ @28 12100 210
+ 138583828 33001+ 838 33010 | 111
nal@183210d 1110~ Safl 210 T 82852010
X (1110~ 3831 150 + 838 33004 | 110~ 351 111)]
(27a) A L= — mase meoad 110 7221872100+ 328 1010 110
+3732185(81€71016T 32812100 | 210
— 3l @18 75104 1 120~ 33%' 210 T @28 52014 1 110
—3a5l 150 +a3e 33004 | 110~ 351 110)]
— nalareiai0d 1101~ 3831 201) + 22835014 101
—ajl 119 + 23833004 101~ @31 107)]
(2ma) "2 155= — n3(3a12 15100 200+ 828 5201d 110+ 838 33004 100
(2ma) 'S i5=(2ma) " Egi5=

(2ma) A= —

— 13(@1812100+ @28 11010 | 1105
71818 mmod 110+ 72(21€32106T 82812010 | 110

+37m32185(218 12010+ 82832100 | 120

+ m32183(a1€ 13001+ Q3833100 | 111

— m3lareTiiod 120~ 33?' 210 T 82812010

X (1110~ 3851 120 +83e 004 1 110~ 331 111)]
(ma) " AG0= — 37m@8 hnpad 020 72(8183110d 110
+ 382872019 020" @38 13001 010) T 3738182(Q18 12010
+ 9839100 120+ 738185(@18 3001 83833100 1 111
— nalare 1106 1110~ 3831 210 + 32872010
X (1110~ 3851 150 + 838 004 110~ 85 111)]

(2ma) l=

(2ma) " 1331=

(2ma) 1322=—

— 73(21835100t @28 1010 110,
— m3(@187T110d 110+ 3828 T201d 0201 838 13004 011)
73(81€7210d 120+ 382€3201d 020 83833001 010)

(2ma) " AZh= na(as833100t @38 2000 101+ 738285(828 2001
+a3e13010 | 1111 738185(Q18 To001 @3€ 23100 1 111
+ 13218,(818 13010t Q2833100 111,

(2ma)” 1Ac1Ji11: 72(828 3015+ 838 12000 | 0117 738285(828 12001
+a3e13010 1111 738185(18 To001 @3€ 23100 1 111
+ 73818,(818 13016t Q2633100 1 111,

—1512,1__ * *
(2ma) 2 501= — 73(@1823100T A3€ 12002 | 101
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(2ma) 13 &= —
(2ma) '355=—

(2ma) '35 =—

73(82€ 13010+ 83€ 12000 | 1015
731833100t A3813000 | 1015
73(218 33100t @28 13010 | 1105
(ma) A 35= — 11838 hnpodl 1017+ 72(3a18 3100 200+ 3283501d 110
+a3e33001 100) + 3732185(218 10011 @3€ 13100 | 201
+ 7138283(828 35001+ 236 33010 1111
— nalareYa106 1101~ 321 200 + 2835010
X (1101~ a3l 11) + @38 33004 | 101~ 3851 109) |
(2ma) " '3355= — n3(a1e Ta100T @38 31000 101,
(2ma) A= na(a1833100T @280 1107 738283(828 2001
+a3e7T3010 | 111+ 738183(218 To00r+ A38 33100 | 111
+ 1738185(Q18130161 2833100 111,
(2ma) " 183%=
(2ma) 2 if=

(@)~ *Agp=—

— 113(828 33010 @3€ 32000 011
— n3(a1833100+ 838 12000 1014
7@€ mmod 101 72(2187110d 101+ @28 1201d 011
+ 383873001 002) T 3732183(218 3001
+ 83833100 | 1021 732182(218 2010t A28 32100 | 111
— 3l @1&3110d ) 101~ 3831 200) + A& $o00d 101
—a3l119) + 38300 101~ 3331 107)]
(2ma) 25l=—
(27a) 'E55= — n3(as83110d 1017 @28 1201d 011+ 385 3004 002

(2ma) ' 35ip= -

* *
73(21833100T A3€ 13002 | 1015

* *
73(@2873010T A3€ 12001 | 011

—1431_ * * *
(ma)” “Agse= — Mm@z mupodl 0111 72(2187310d 1101 38283301 020

+ 83833001 011) + 738183(818T 1001 A3€ 13100 | 111
+3738,83(2¢ 32001+ 38 33010 | 021

— nalareYai0d o1~ a5l 110) + @28 33010

X (o112~ 383 620) + 838 53004 | 011~ 3851 012 ]

1421
(ma) " Ags= — M€ mnp1d 011 72(2187010d 1017 @28 5001d 011

+ 323833001 002) + 37738285(828 33001

+a3833010 | 0121 738182(818 1016t @28 12100 | 111
— 3l @18 72104 lo11— ai' 119+ @28 32010

X (Io11~ 3831 021) + 838 33001 L 011~ 3831 01|

1231
(2ma) 2501 = — 73(@2833015+ A3 23001 | 011-

Closed-form expressions for all the potential integrals entering
in Eq. (31) are given in the next sectiaisee Eqs(35), (36), and
(37)). Equationg31) can also be cast in Eshelby’s format. Calcu-
lations for eigenstrains characterized by higher order polynomials
can be carried out in a similar fashion, although they are best done
using different symbolic-numeric processors, such as, Matlab,
Maple, and Mathematica. We close this section with two impor-
tant observations. First, in the general case where the eigenstrains
are given by quadratic or higher-order polynomials, it is not pos-
sible to represent the induced strain field in Eshelby’s form. This
can be easily illustrated by considering the case where the eigen-
strains are given by a single term of the form
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The starting values for the above recurrence relations

15an, 15an,1520,158), which are given by the equations

&iingr(X1/a1)P(xp/a5) X3 /a3) (p+q+r=2) are

(no summation onp,q,r implied).

The availability of the Eshelby tensor for this case would imply
that the induced strain field is representable in the form

(@)

2
000~ 32 2
VaZ—a3

F(6,k),

&ij = Sijki €kl
[F(6,k)—E(6,k)],

2
1000, 2 2\ 2 =2
X (a7 —a3)Vai—a;
a;/ \ax/ \as —

(@) 2 2\/al2 a2

X1\ P/ X2\ 9 X3 |"

_Sijklgklpqr

. — = _ _ F e,k)+—E 0,k)
(no summation onp,q,r implied). 010 (affag)\/ﬂ ( (ai—ag)(ag as) (
However, as can be seen from E#), in this case the induced >
strain field isnot characterized by just a single term of the form _ 2 / asta 34
(X1/a1)P(x,/a5)9(x5/a3)", rather by arentire polynomial of or- (a5—a3) V(ai+a)(as+a) (34)

derp+qg+r+2l. Thus this observation leads us to the conclusion

that in the general case of arbitrary order polynomials where th& -2 E(0.K) 2 a§+a
eigenstrains are neither constant nor linear, it is not possible too1= > 5 75— E(0.K+ —— 2y 2 )
deduce an explicit expression for the Eshelby tensor. (az—a3)Va;—ag (8;~a5) V¥ (ata)(ata)

The second observation is related to an interesting propertywhereF (6,k), E(6,k) are the incomplete elliptic integrals of the
the polynomial characterizing the induced strain field within theirst and second kinds, respectively, and

ellipsoid. In order to lead the reader to this property, once again let
2_ .2 2_ .2
.4 (& asg a—a
0=sin ——, k=\/=Z>——=.
ajta a;—aj

us assume that the eigenstrains are given by a single term of the
form af}stu(xl/al)s(xz/az)‘(x3/a3)”(s+t+u>0) (no sum on
s,t,u). Calculating the displacement gradient, we have . .

) g P g The reader’s attention should be brought to the fact that the first
three equations it33) are not applicable to thoslé s, whose
two of the three subscripts are simultaneously zero; Slﬁﬁ?rs

need be modified using the fourth equatior{38), after which the
first three equations can be utilized.
Equations(33) and (34) define a set of recurrence relations by

(35)

InUi(X) = 1719y me 7]2’9‘9F

N NI
(T + 7300, TN+ axedi 00T

- 7]3(9|(9] (?n(k)pf‘}\‘k'l . (32)

For this case, from Eqg7), we have

=gt OV, W means of which closed-form expressions Fg can be deduced
_ % (@ ¢ foralli,j,k=0,1,2;--. For the case wheres (), =0 and hence
TELjs gt U b Vsl (no sum ons,t,u). Egs.(33), (34), and(35) simplify:

Now, it can be easily seen from the E@32) and(14) that the
polynomial characterizing the induced strain field in the ellipsoid
(which is given by a polynomial of ordé\ + 2| —2) has the prop-
erty that the sum of powers of ,X,,X3 in each individual term,
xix3x3, in that polynomial(see Eq(22)), i.e.,p+qg-+r, must be
even or odd, depending on whetretrt+u is even or odd, re-
spectively. Thus, in the linear eigenstrain case, the resulting poly-

2
looo= 5=
va;—aj

2
- _[F
<ai—a§N—ai—a§[ (

F(QO!k):

60.K) —E(6o.K)],

nomial will not have the zeroth-order term. This is why it turned af—ag
hat in Eq.(29), ¢l =0. Further, if we consider th fl F(0,k)+ E(6o.,k)
out that g.(29), cg=0. *utf, e cg side tt e casE of lo10™ az)\/al— 0 —ag)(aﬁ—ag) 0
guadratic elge_nst(alns, |.es,ij=sijsw(x1/a1)_(x2/a2) (x3/_a3) _
(s+t+u=2), it will turn out that the resulting polynomial will 2a,
not have the first-order terms. Similarly, for the case of cubic - m,
eigenstrains, the resulting polynomial will not have the zeroth- 192392 93
order and quadratic terms. _9 2a,
0= 57 3 75— E(00. K+ ————,
(a3—aj3)yai—a3 aja3(a;—a3)
4 Recurrence Relations for the Potential Integrals lme1n—li+1mn
. . . . . liime1n= 2_ .2 )
In this section we give a synopsis of the recurrence relations for a;—a;
the integrall (¢ . Details of the derivation can be found in the | 0
writer's worktlg]. Ly imne1= lmn+l mn, (36)
(@) aj—aj
(a IIerln II+1,m,n
II+l,m+l,n ?l II,m,n+1_ll,m+l,n
2 lmeine1= 7_.2 )
a;—as
I|(cl?|n+l IIJrlmn 2 2 2
II-*—lmn+1 a a ’ a1(2|+]-)II+1,m,n+"312(2m+:I-)II,erl,n'i'a?,(Zn"':I-)II,m,n+1
1 3
(a) (a) =(2l+2m+2n+1)limn,
(@) II,m,nJrl_II,erl,n )
It in+1= -2 (33) where the expression faf, can be deduced from that far by
2~ a3

(@2+a)(21+ )1+ (

I+1m,n

a3+ a)(2m+1)1{% . +(aj+a)(2n

(21+2m+2n+1)1{%

+1)|Imn+l Imn-
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Op=sin~

putting =0 into the first equation iri35), namely,

1 Val_a3

37
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[ Scission and Healing in a
A.8-winetat, | Spinning Elastomeric Cylinder at

Fellow ASME

Mechanical Engineering, EI t d T t
The University of Michigan, e"a e e m p e ra u re
(042 Auto Lab,
Ann Arbor, MI 48109 When an elastomeric material is subject to sufficiently high temperature, macromolecular
g-mail: lardan@engin.umich.edu ASME network junctions can undergo time-dependent scission and re-crosslinking (healing). The
material system then consists of molecular networks with different reference states. A
J-. A. Shaw constitutive framework, based on the experimental work of Tobolsky, is used to determine
Assistant Professor, the evolution of deformation of a solid rubber cylinder spinning at constant angular
Assoc. Mem. ASME velocity at an elevated temperature. Responses based on underlying neo-Hookean,
Aerospace Engineering, Mooney-Rivlin, and Arruda-Boyce models, were solved numerically and compared. Dif-
The University of Michigan, ferent amounts of healing were studied for each case. For neo-Hookean molecular net-
1320 Beal Avenue, works, there may be a critical finite time when the radius grows infinitely fast and the
_Ann Arbor, M 48109-2140 cylinder “blows up.” This time depends on the angular velocity and the rate of re-cross
e-mail: jashaw@engin.umich.edu linking. In addition, no solution was possible for angular velocities above a critical value,
even without the effects of scission. Such anomalous behavior does not occur for Mooney-
Rivlin or Arruda-Boyce network responsdOl: 10.1115/1.1485757
1 Introduction bile and aircratft tires, it is natural to study the problem of a spin-

The general form of the constitutive equation for nonlinear theg-'cri]gsirgr? t;irdc%/ggﬂﬁg l;st'?r?cfegggzt'ttg;;\gi:gfuor;éwm(:h allows for

moelasticity used to represent the response of elastomeric materi ection 2 begins with a presentation of the constitutive theory

IS ex_pressed_ In terms .OT a temperatur_e-dt_apendent strain engeay ihe response of rubber that undergoes temperature-induced
density function. Implicit in the formulation is the usual assUmMPsission and re-cross linking. The problem of a rotating rubber
tion that material response isduetoa macromolgcular me(:hami‘g,{)nnder is defined in Section 3, which reduces to an equation for
that does not change during the thermomechanical process bejiig axial stretch ratio. The general constitutive framework of Sec-
considered. Tobolskl] presented experimental results, howevegjgn 2 allows the user to choose a specific underlying thermoelas-
indicating that when the temperature becomes high enoughj@model. Responses based on neo-Hookean, Mooney-Rivlin, and
change can occur in the macromolecular network. This mechgryda-Boyce models, in turn, are studied for the spinning cylin-
nism consists of scission and subsequent re-cross linking of M@gr problem in Section 4. Results are illustrated with numerical

romolecular network junctions. The process is time-dependent a@ghmples, and comparisons are made for the different models.
can result in substantial changes in mechanical response and per-

manent set upon removal of applied loads.
Tobolsky’s results show that the nonlinear theory of theR Constitutive Framework

moelasticity applies provided the temperature is maintained belowIn the experiments conducted by Toboldy, a rubber strip at

a critical ValL.‘e' When this temperature is exceeded, scission ar%m temperature was subjected to a fixed uniaxial stretch and
re-crgss’ linking Of. network junctiongreferred to hereafter as then held at a higher fixed temperature for some time interval. At
he_allng) oceur Wh'ch requires the_ development O.f anew ConSIfémperatures abovE;, (say 100°Q, called the chemorheological
tutive theory. In previous work, Wineman and_ R‘"?‘Jagom'a”d temperature range, the stress was observed to decrease with time.
Rajagopal and Winemali8] developed a constitutive framework ot the end of the time interval, the stress was removed and the
which applies when deformations are large enough to cause SCigsacimen was returned to its original temperature. Tests were car-
ion. By contrast, the present work uses this framework o €Xpregsq out for different stretches, temperatures and time intervals.
a constitutive theory that addresses temperature-induced SCISS{AR decrease in tensile stress with time and the permanent stretch
and healing. were measured. The data were analyzed assuming neo-Hookean

The problem of a rotating rubber cylinder has attracted the iBehavior, for which the relation between tensi@auchy stress
terest of a number of authogsee Horgan and Saccomaifd] and o(t) and uniaxial stretch ratia is

Chadwick et al[5]). A spinning rubber cylinder represents a very
simple model of an automobile or aircraft tire, recognizing that
the actual case likely involves nonuniform temperature fields

which we will neglect here. Neverthel nder certain ratin . .
ch we eglect here. Nevertheless, under certain operat ereT is the absolute temperatuiejs the Boltzmann constant,

conditions, these fires can experience a substantial increase ndn(t) is the current cross link density. It was concluded that the
temperature. With recent events involving the failure of automoy . o Y-
decrease inr(t) was due to scission of molecular network cross
—_— links, resulting in r m(t). Th rmanent stretch w
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whereX is the stretch ratio of the original network held at the high @

temperaturen, is the cross link density of the original network at <>

the end of the test, and, is the cross link density of the new ’_j

network. The second term {2) expresses the assumption that the

new network is formed stress free when the stretch ratio in the 1 ]

original network isk. Tobolsky’s data also suggested timatand L " AL
n, are independent of the stretch rakoup to a stretch ratio of A B 1

about 4. It was also assumé@iobolsky[1], and Tobolsky et al.
[6]) that all broken molecular cross links reform to produce a new
network in a stress free state. That is, there is conservation of e T
cross links,n;+n,=n(0), which we hereafter refer to as com- \—I_/
plete healing. The validity of this assumption depends on the par-
ticular chemistry of the rubber being considered. Fig. 1 Reference and current configuration for spinning
Neubert and Saundefg] carried out tests similar to those ofcylinder
Tobolsky, but for a pure shear deformation. They measured per-
manent biaxial stretch after removal of stress and reduction of the
temperature, and found that predictions based on a neo-Hookd#aé formation of new cross links, a network is formed in the
model led to inaccurate predictions of permanent set. A Mooneipterval fromt to t+dt whose reference configuration is the cur-
Rivlin material model led to better agreement with measured pgent configuration at timé. As suggested by Tobolskil] and
manent biaxial stretch. Fong and Zag&$ improved the agree- Tobolsky et al[6], this is assumed to be an unstressed configura-
ment by using the Rivlin-Saunders modE9]). tion for the newly formed network. Under subsequent deforma-
Using the uniaxial relationgl) and (2) as a guide, a three- tion, the motion of the newly formed material network coincides
dimensional constitutive framework is developed as follows. CoRyith the motion of the original material network. Stress arises in
sider a rubbery material in a stress free reference configurationgis newly formed material network due to its deformation relative
a low temperaturd,. It is assumed that there is a range of deyg jts unstressed configuration at tirheAt the later timet, the
formations and temperatures in which the material responsepis erial formed at earlier timehas the relative deformation gra-
essentially incompressible, isotropic and nonlinearly elasticidf dient E=ax/a%, where is the position of the particle in the

the position at current time of a particle located aK in the configuration corresponding to timteandx is its position at time
reference configuration, the deformation gradient is defined as 9 P 9 P

= gx/9X. The left Cauchy-Green tensor B=FF'. The Cauchy
stresso is given by

For simplicity, the new material network is also assumed to
respond as an incompressible, isotropic, nonlinear elastic material.
o=—p°l+°B,T)=—-p° +2Wg|3_2wg|3—l (3) The left Cauchy-Green tens@= FFT is introduced for relative
deformations of this network. The constitutive equation for the
wherep® arises from the constraint that deformations are isochetwork formed at timé is then given by
oric, 11,1, are invariants ofB and W9=oW%4l, and W) I X o
=JW°4l, are partial derivatives of the strain energy density o=—pl+&(B,T)=—pl+2W,B—2W,B~* (5)
WO(I4,1,,T) associated with the original material. wherep arises from the constraint that deformations are isochoric,
For low temperaturesT<T,,, no scission occurs. All of the . 7. are invariants o8, andW, =W/ i, andW,= oW/ ai, are
material has its original reference state and the total stress is giYftial derivatives of energy density of the new network,

by (3). At time t=0 the temperature is increased to a high temz, i, Ty |n general, the energy density associated with the
perature,T=T.,, and scission of the original microstructural net-

. i A newly formed material can differ from that associated with the
work is assumed to occur continuously in time. A scalar-valuegﬁginal material.
functiona(t)=0 is introduced, which represents the rate at Which The tota| current stress in the material is taken as the superpo-
volume fraction of new network is formed at timeThus,a(t)dt  gjion of the stress in the remaining material of the original net-
is interpreted as the volume fraction of new material that h3s, .k and the stress in new networks. Thus

formed during the time interval fromto t+dt. The volume frac- t '

tion of original network remaining at timeis denoted a®(t). a A .

b(t) €[0,1] and is a monotonically decreasing functiontofor o=—pl+bo’(B,T)+ Jl)a(t)o-(B,T)dt (6)

the sake of simplicity and consistent with Tobolsky's observa-

tions, it is assumed thad(t) and b(t) do not depend on the wherep, b, B, T, o are evaluated at the current timeThe
deformation. He showed for experiments under uniaxial extensiterm —pl incorporates the corresponding terms(8) and (5).

that this is reasonable provided the stretch remains less than 3Tt stress in the original network?(B,T), is expressed in terms

4. In addition, it is assumed that the rate of formation of newf W°(I,,1,,T) by (3), and the stress developed in any new net-

networks is given by works, (B, T), is expressed in terms &%(i;,1,,T) by (5).
db(t) Although Tobolsky assumed the response of the original and
a(t)=— e (4) newly formed networks to be neo-Hookean, Neubert and Sanders
s

[7] and Fong and Zapds8] considered other possibilities. Thus,

wherene[0,1] is a scalar parameter that depends on the partich’(11.12,T) andW(I; 15, T) are left, as yet, unspecified.

lar rubber system being considered. Tobolsky’s assumption of n§t- .

work conservation corresponds to complete healing,7er1. Boundary Value Problem Formulation

Complete scission, by contrast, occurs with no new network The boundary value problem consists of a solid cylinder of

formation and can be modeled witp=0. The work of Tobolsky radiusR,, lengthL, in its undeformed configuration, and uniform

does not address whether a time lag exists between scission aiis densityp, which is spinning about its central axis with a

re-cross-linking. Accordingly, in the absence of experimental daganstant angular velocity (see Fig. 1 The temperature of the

on this point, Eq(4) neglects any time lag between scission angylinder is changed at=0 to a constant, uniform high tempera-

healing. R ture, T>T,,, so that the material undergoes the scission-healing
Now consider an intermediate times[0t] and the corre- process. This chemically based relaxation process and the cen-

sponding deformed configuration of the original material. Due tmifugal loading cause the dimensions of the cylinder to change
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with time. The cylindrical coordinates of a point in the referencéom the condition that the volume of the newly formed network
and current configurations, are denoted By®,Z) and (,6,z), bounded by a radial surface and the ends of the cylinder atttime
respectively. It is assumed that plane sections remain plane agdhe same as in the current configuration.

cylindrical surfaces deform into cylindrical surfaces, resulting in a The physical components of the deformation gradient of the

deformation described by network formed at timé with respect to cylindrical coordinates
=r(Rt), Re[OR,], are given by
[d
6=0+ot, ©c[02m), @) 8_:(“) o o
The material response is assumed to be isochoric. By considering 0 ? 0
the volume bounded by a radial surface and the ends of the cyl-
inder in the reference and current configurations, it is found that L O 0 A(t)
R VA 0
r(Rt)=—, ®) ()
AN A()
where\(t) €[0,1] is the axial stretch ratio. Accordingly, the cur- = 0 A1) 0 : (13)
rent radius of the cylinder is (1)
Ro © ) 0 MU/ (T)
ro= . .
0 () Interestingly,F(R,t) and F(?,t) are independent of radial posi-

The physical components of the deformation gradient of the
original network with respect to cylindrical coordinates are given

by

The stress components are found by calculaBgg from (10)
andB(t) from (13) and substituting into the constitutive E@).
SinceB(t) and B(t) are diagonal matrices, no shear stresses exist

[ or and the normal stresses can be written in the form
=R 0 0
d O =0g9=—P+Fy,
FR)= 0 r(RY 0 0,7~=—P+F,. (14)
R . . .
In the subsequent analysis, only the expression for the difference
L 0 (N F. —F,, appears, which can be written
[ 1 1 1 v
— 0 0 For—Fr=b(T,)[ N(1)2— — || 2W3+ — 2w} +fa(T,t)
A(t) A1) A1) 0
= 1 . 10 ~ “
0 —— o0 (10) ARG ] [N (S P
D) X| | —=] = ——|| 2W;+ —=2W, | dt. (15)
A(D) A(1) A(1)
| 0 0 INGS)

The scission-healing process is assumed to occur sufficiently
The reference configuration of any new formed network at t'mﬁowly that inertia terms |nvoIV|ng9 2r19t2 and 622/ t2 can be
t is the configuration of the original network at tinte and is neglected. Hence, in the expressions for the acceleration, these

defined by terms are neglected and only the centripetal term is considered.
R The axial and circumferential components of the equations of mo-
t=r(R1)= . Re[ORy] tion reduce to
VA(1) o ap
- - —=-—=0, (16)
0=0+wt, Oe[0,2m) (11) a0 Iz

- and the radial component becomes
9=\()z, Ze[OL,]. P

oy,
ar

The relation betweep the coordinatés@(,i) of a particle in the
configuration at time and its coordinatesr(#,z) in the current
configuration is found by eliminatingR;®,2) in (7), (8), (11), where use has been made(@#)). Integrating(17) gives
giving

=—po’r, 1e[0ro(t)], 17

2
(1o~ 0 (1= 2 [rg2-12. (18)
)\(t), rrit o 1 rrits 2 0 .
A The outer surface is traction-free at each time(®0 reduces to
A ~ 2
=0+ w(t—1), pw
@t ot )= 2o 1?17, (19)
>\(t)
z= >\(t) (12) Combining(19) and(14) gives an expression for the scalar figld
2
Since there is no relative motion between the network formed at —p= %[ro(t)LrZ} For . (20)

timet and the original netwgrl(,lz) describes the deformation of
the network formed at timé. The first equation of12) arises Substituting into(14) determines the axial normal stress,
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2 24,
_pw 2 2
UZZ_T[rO(t) —r°]+F,—Fy. (21) to
(hr)
Assuming that there is no resultant force on the ends of the cyl- 18]
inder leads to a boundary condition satisfied in the weak sense as
ro(t) 12
27Tj o,Adr=0. (22)
0
6
Integrating the axial streq21), then leads to the equation
p 2
For=Fr=— = To(D? (23) 0 50 100 150 200
— T(C)
In view of (8), (23) reduces to
Fig. 2 Characteristic time for scission and healing for E.ct
pw’ =127.24 kJ/mol
)\(t)[Fzz_Frr]:_TRO' (24)
Substituting from(15) leads to
1 ¢ 3 hN, exd 1/6] (31)
b(T,HN (L) N(t)2— — (2\/\/°+—2vv° +)\(t)f a(T,b) 0T E 0
)\(t) 1 )\(t) 2 o act
5 R . This characteristic time is plotted versus actual temperature for
(1) A(Y) A INCI N « pw? 5 Tobolsky’s material in Fig. 2. Note the extreme temperature-
X _)\(f) - _Mt) 2W, _)\(t) 2W, |dt=— TR » dependence on this characteristic time. For example, the charac-

teristic time is about 24 hrs for 100°C, but a 20°C increase gives
(25) avalue of only 2.7 hrs, an order of magnitude reduction.

) ) ) ) _ Finally, including the nondimensional time i27) gives the
a nonlinear Volterra integral equation for the axial stretch ratigy,yerning equation

\(t). Finally, dividing (25) by the shear modulus for infinitesimal

deformations of the original network, s o 1,
e IN(7)°—1]| wi+ ——=w5 |+ p\(7)
w(T)=2[We+ W3], = 1,3, (26) N AR YEA A
i i i TN\ M) A(7)
produces the nondimensional equation -7 _ = 0 e _ 02
XJ’o [(’\(3')) N7) Wi+ )\(T)WZ d7=—-Q%. (32)
1 1 .
b(T,HON(t)| M(1)2——— (w2+ —wy | +A(t) | a(T,b) .
A(t) (D) 0 4 Numerical Results

A MY —_02 @7) for which scission-healing processes occur, is now investigated
)\(f) A(t) ' for three different material models, neo-Hookean, Mooney-Rivlin,
and Arruda-Boyce. In the absence of experimental data to the
in which Q= w/wy(T), w3(T)=4u(T)/pR3, w2=2W°/u and contrary, we will assume that,=W, i.e., the newly formed ma-
W,=2W,/u, a=1,2. terial has the same properties as the original matéti@ would
Furthermore, a nondimensional temperature and nondimdif @n interesting issue for further stadyhe nonlinear Volterra
sional time can be defined as follows. According to Tobolgky integral Eq.(32) for A(r) was solved numerically by discretizing
the rate of scission for many rubbery materials is given by  the integral term in time using the trapezoidal rule and solving the
resulting nonlinear algebraic equation by Newton iteration. The
b(T,t)=exd —a(T)t], (28) time increment was chosen sufficiently small such that the time
evolution of A(r) had converged. A time increment ofr
=1/100 produced converged results. For each material model, the
Kk Eact response was evaluated for three cases: no healind)(, partial
a(T)= HT exp{ - ﬁ} (29) healing (y=0.5), and complete healingyE1).
In (29), k is Boltzmann’s constant (1.38086.0 2% J/K), h is
Planck’s constant (6.6260810 3 J-s),Ris the gas constant, and
E..: IS an activation energy. For the particular material in Tobo
sky’s experimentsE .= 30.4 kcal/mol(127.2 kJ/mol. In addi-
tion, Boltzmann’s constant can be written B8N, , where Ny
=6.023< 10°¥mol is Avogadro's number. Defining=RT/E,qas wo=W,=1, wi=W,=0 (33)
a nondimensional temperature, alloy@9) to be restated as

( )2 )\(E)]( ) The response of the spinning cylinder to elevated temperature,
2 -2 W =, | di
1 2

A(t)

where

4.1 Neo-Hookean Response.Consider first the response
when both the original network and the newly formed networks
are neo-Hookean. In this case, the shear modulus is constant, de-
Fined by 2W2= 2, andW2=0. Substituting the material param-
eters

into (32) gives the governing equation
. (30)

Eact 1

)= ——fexg——

(=N, ]

Introducing a characteristic time for scissiogs 1/a, leads to the

definition of a nondimensional time;=t/ty= at. According to

(30), the characteristic time for scission is related to the nondi- _
mensional temperature as

A3 e T+ ”f e "\(7) "7
0

e T+ ”J e "\ (7)d7|=-02 (34)
0
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Before considering any numerical results, several deductions a1

can be made regardin@4). It is instructive to first consider the
case wherny=0, that is, the original network undergoes scission
but there is no subsequent cross linking. The governing(&4. 095
reduces to 05 056
07
M7)3-1=e"702 (35) 08
At =0, the axial stretch ratio is given by
A(0)*~1=-0% (36) o 2 4

It is, therefore, assumed that
O<1, or w’<—, (37)

a necessary and sufficient condition to ensure a physically mean-
ingful solution (\(0)<[0,1]) for a neo-Hookean material. This
observation was made previously by Horgan and Sacconjdhdi
and Chadwick et all5]. Furthermore, there is a subsequent time
75 given by

=-2InQ, (38)

when the length of the cylinder reduces to zero and the radius
becomes infinite. It follows from35) that d\/dr— —« as 7

— 13 . The radial increase becomes infinite according%o and
time 75 can be interpreted as a critical runaway time.

Next, let 0< =<1, which allows for the formation of new net-
works. The right-hand equality represents the situation when the
original network is completely transformed into new networks. It
follows from (34) that

e’t+nJ‘e’ﬂ(ﬂd%—(f
0

N(r)3= ; (39)
e T+ e "N(7)"2d3
—
and ©
d\(7) —e T1-X(7)°] . . . :

= _ . (40) Fig. 3 Evolution of axial stretch for Neo-Hookean material: (a)

dr - no healing (#=0), (b) partial healing (#=0.5), (¢) complete
3N (7)? e-t+nJ.—<73da healing (7=1)
oM7)

At 7=0, (39) reduces to(36). Equation(37) is still needed to
ensure a physically meaningful solution. Sinc@)<1 and(40) . __ . s\ .
implies d\/dr<0, A\(r)<1 and is monotonically decreasing.@nd taking the limit asr— 7, , A(7)—\(7;)=0, the integral
Next, consider the first two terms in the numerator8). Their vanishes in the limit and the denominator approaches zero. It fol-
time derivative is[— 1+ 7\(7)]e"". The inequality & =<1, lows from (40) thatd\/d7— — as7— T’; . These results show
and the fact thak (7)< 1, indicates thaf — 1+ 7\ (7)Je” "<O0. that although new networks are formed, there may still be a criti-
There are two cases to consid@near unity and) near zero. Cal runaway timer; . The consequence of the formation of new

First, if Q~1, the first two terms in the numerator will monotoni-networks i§ to increase thg critical runaway tinrt;e. This implies
cally decrease and there may be a time, denatdwhen the that there is always a critical runaway time for anyfor () ap-

stretch ratio reaches zero. Consequentlysatisfies proaching unity. o
The other case is where the angular velocity is smah<(1).
o Ty i o In this case the numerator ¢89) may not vanish, leaving 0
e tn| e 'N7)d7T-Q°=0. (41)  <\(7)<1. Then, d\/d7—0 according to(40), and a finite
0 steady-state value is possibdg,7) —\..>0.
Combining(38) and (41), gives Figure 3 shows the numerical results for the evolution of the
. axial stretch ration(7) for a neo-Hookean material undergoing
- T 0~y (2 s scission healing. The case of no healing=0), or pure scission,
€ r=e Wfo e A7 (42) is shown in Fig. 8a) for different values of the nondimensional
) ) . o angular velocity() between 0.5 and 0.9. The axial stretch starts at
The integral is positive, which implies an initial value less than one and then decreases monotonically to
s (43) zero as expected, consistent with the above analysis()As-
7 0

creasesry decreases. The case of partial healing=0.5), where

Rewriting the denominator af0) as one half of network junctions that undergo scission reform, is
T N(1)? shown in Fig. 8b). For large values of) the axial st_retch col-
N(7)%e T+ nJ e ——~d7, (44) lapses to zero, but for small valugsee() = 0.5) the axial stretch
0 A7) decreases but approaches a nonzero steady state value. The case of
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Fig. 4 Dependence of initial axial stretch for Mooney-Rivlin
material with nondimensional angular velocity, Q, for different 1 Q
ratios of MR constants, B= W3 W 05
0.5
06
complete healing #=1), where all network junctions that un- oz
dergo scission reform, is shown in Fig(cB The axial stretch 0 > 45(113

collapses to zero for larg@ and approaches a steady state value —
for small , but the limiting () between these two behaviors is
larger (between 0.7 and 0O)&han for the partial healing case. For (b)
large angular velocityQ~1), the critical collapse timefC‘]) gets
smaller as() gets closer to unity. A !

It is interesting that a nonzero steady state valyecan be ' & Q
achieved even for moderate values®fWhen\(7)—\.,, (34) & 05

06

can be written as

xif e-"m(‘r)*d%—f e NHdi=—0%y,  (45)
0 0

0.8
a cubic equation fok., akin to(36), once the integrals are known. ?g
Note that, since &\ (7)<1, the first integral is larger than the 0 2 — 47
second one fge” "\(7)"2d7>[5e "N (7)d7), which allows
(45) to be satisfied for &\,.<1. This is a result of the assump- ©

tion that no time lag exists between scission of original networks 5 Evoluti ¢ axial h for M Rivii -
and formation of new networks and the assumption that new n&tg: ® Evolution of axial stretch for Mooney-Riviin materia

S . ith B=0.2: (a) no healing (%=0), (b) partial healing (%
works are not allowed to undergo scission again. These act\i% 5). (c) complete healing (=1)
stabilize the material against structural collapse. o

4.2 Mooney-Rivlin Response. Consider now the response
when both the original network and the newly formed networkQ. Therefore, no restriction ofl, such ag37), is needed to obtain
are Mooney-Rivlin materials. In this case, the initial shear modyhysically meaningful results for a Mooney-Rivlin material.
lus is defined by ™2+ 2W9= 1. W0 andWS are independent of At each time, the left-hand side ¢46) becomes unbounded as
B and W, and W, are independent oB. The ratio of the two A(7)—0 because of the terms containing associated with
Mooney Rivlin constants is defined ¢FW2/WC1> Noting that Mooney-Rivlin response. A nonzero positive solutioir) can be

. . . - 2 !
0_ 4 0_ 4 ; found WItl’_]Ol.,It imposing restrictions of)~. _Accord_lngly, for
Wy =1/(1+p) andwz=p/(1+ ) allows (32) to be written as Mooney-Rivlin response, there does not exist a finite time when

1 the axial stretch vanishes and the radius becomes infinitely large.
1+ mﬂ) +7N\(7) Horgan and Saccomanf##] considered the equivalent ¢47)
- A . for the case of nonlinear elasticity wham and W? depend on
« JTe’; 7\(7)) AT (1+ A7) the first invariant of8. They showed that for certain forms o
0 N (7) A7) A7) (see Gent[10], determined from finite extensibility consider-
ations, and Knowleg11], called the generalized neo-Hookean
=—-0%1+p). (46) mode) the axial stretch would always be nonzero. Thus, the non-
At 7=0)(0) is the solution of physical response fou_nd for neo-Ho_okean material does_not occur
for many other material models. This anomalous behavior seems
B ) to be a peculiarity of the neo-Hookean material model. It can be

e "[N(1)3-1]

Bld7

[1-X(0)%]| 1+ X0 =Q%(1+pB). (47)  expected that there would not exist a finite time when the axial
stretch vanishes if most any other model was used to represent the
In contrast to(36), the left-hand side of47) becomes unbounded response of original and newly formed networks in a constitutive
as\(0)—0 because of the nonzero const&v} in the Mooney- theory for scission healing.
Rivlin response. Therefore, the soluting0)=0 no longer exists.  Figure 5 shows the numerical results for the evolution of the
This can be seen in Fig. 4, which shows the initial axial stretcixial stretch ratio\(7) for a Mooney-Rivlin material undergoing
ratio for different angular velocitie® and different values oB.  scission-healing. A typical value gf=0.2 was used. The case of
Note that for8=0, which is a neo-Hookean material(0)—0 as no healing ¢=0), or pure scission, is shown in Fig(ep for
Q—1. For nonzerg3, however,\(0) never reaches zero for anydifferent values of the nondimensional angular veloditybe-
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Fig. 6 Dependence of initial axial stretch for Arruda-Boyce
material with nondimensional angular velocity, Q, for different ‘ Q
locking stretch ratios, A\, 0.5

tween 0.5 and 1. The axial stretch starts at an initial value less
than one and then decreases but only asymptotically approaches /0.
zero. The case of partial healingg€ 0.5) is shown in Fig. &). : <
For large values of) the axial stretch approaches zero, but for 0
small values the axial stretch approaches a nonzero steady-state

value. The case of complete healing= 1) is shown in Fig. &). (b)
Again, the axial stretch approaches zero for lafgeand ap-

proaches a steady state nonzero value for sfdabut the transi- 1
tion value of(} is larger. A Q

4.3 Arruda-Boyce Response. As a final case, the response ’ \ 05

when both the original network and the newly formed networks
behave as Arruda-Boyce materidlee[12]) is considered. As- 0.5 07
suming incompressibility, the strain energy density of a three-term
Arruda-Boyce material is given by

11 3 a3 ] =
1050\;11('1_3 ) (48) 0 2 4
wherep is the initial shear modulus and,, is the locking stretch ©
ratio, a material parameter, both of which could be temperature- ¢
dependent. In this case{ is not constant, butvy="0. Substitut- Fig. 7 Evolution of axial stretch for Arruda-Boyce material
ing the material parameter with X\ ,,=3: (a) no healing (=0), (b) partial healing (7=0.5),

(c) complete healing (n=1)
R
W = — —_—
! A2 L 17ad
with 1,=2/\(7) +\(7)? and a similar expression fair; with 1,
=2N(D)IN(P) +[N(7)IN(7)]? and then into(32), produces the )
governing equation. 5 Summary and Conclusions

The initial axial stretch solution.(0) is plotted in Fig. 6 @s @  The houndary value problem of a spinning elastomeric cylinder
function of angular velocities) for different values ohr,. Simi- nqergoing temperature-induced scission and re-crosslinking was
Iarl to th(?QMoloﬂey-F;lvlln casey(0) 'Sh greaterz than Z‘?rf for all gydied. The problem reduces to a nonlinear Volterra equation for
values of{}, although one can see that as the material paramelfr, yia| stretch ratio. The general constitutive framework allows

\m gets largex(0) approaches zero whed>1. = . .
Figure 7 shows the numerical results for the evolution of th’:he user to choose a specific underlying thermoelastic model for

axial stretch ration() for Arruda-Boyce material undergoing fie original and healed mlcrclzstructural mater_lall_ networks. Re-
scission healing. A typical value of,,=3 was used. The case of SPO"S€S based on neo-Hookean, Mooney-Riviin, and Arruda-
no healing (=0), or pure scission, is shown in Fig(aJ for Boyce models, were _sol_ved nu_merlcally and_compared. Different
different values of the nondimensional angular veloditybe- 2mounts of re-crosslinkinghealing were studied for each case.
tween 0.5 and 1. The axial stretch starts at an initial value le§90malous behavior was noted when using the neo-Hookean
than one and then decreases, but only asymptotically approachlel, in that it was susceptible to premature and catastrophic
zero. Qualitatively, the response is similar to the Mooney-Riviifollapse. In fact, no solution was possible for angular velocities
case in F|g &) The cases of partiaj healing7(: 05) and com- above a critical Value, even without the effects of scission. The
plete healing §=1) are shown in Fig. ®) and Fig. 7c). Again, Mooney-Rivlin and Arruda-Boyce cases, although quantitatively
the qualitative response is similar to that of the Mooney-Rivliflifferent, behaved qualitatively similar showing similar trends
case, but the transition from a long time steady state behavior twih angular velocity and healing rate. The study confirmed that
collapse behavior is more distinct in the Arruda-Boyce case. THige anomalous collapse behavior of the neo-Hookean case can be
case also confirms that the anomalous collapse behavior of thwided by including a dependencelgrin the energy density, as
neo-Hookean case can be avoided by including a nonlinear poiy-the Mooney-Rivlin case, or by including a nonlinear depen-
nomial dependence dn in the energy density. dence onl 1, as in the Arruda-Boyce case.

w= l(| —3)+L(|2—32)+
H2tt 20020t

12 (49)
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Dynamic Condensation and
Synthesis of Unsymmetric
G. Visweswara Rao Stl‘uctural SVStems

Engineering Mechanics Research India (P) Ltd.,

607/907 M. G. Road, In this paper model reduction of an unsymmetric and damped structural system
Bangalore 560001, India is presented using a two-sided dynamic condensation technique. The method is an
iterative one and essentially utilizes orthonormalized complex eigenvectors of the
unsymmetric system. The eigensolution of the reduced order model with specified master
degrees-of-freedom is obtained by Lanczos algorithm. The model reduction procedure
is further utilized in substructure synthesis and eigenvalue analysis of large size
unsymmetric systems. Application of the condensation technique is illustrated via two
example problems of rotor bearing systefBOI: 10.1115/1.1432988

1 Introduction methods invariably require an eigenvalue analysis of each compo-

For eigensolution and response analvsis of large structural sne_nt. Substructure synthesis as proposed in this paper condenses
9 P Y 9 L3ch substructure individually. Discrete/intermediate link ele-

tems, use of the complete analytical/discrete parameter mwe'ﬁ?ém& if any, that are present in the system are kept out of the

sults in considerable computer run time and huge storage requl«ﬁ%‘(ajl'fldensation process initially. The use of the dynamic condensa-

ment as well. It is imperative that there is the need for reduce on technique and substructure synthesis procedure developed in

- . . . iS paper is illustrated via two example problems of rotor-bearin
efficient use of available computer disk space. Dynamic condeéystgmpS plep 9

sation methods reported in literatufd—3|) are essentially modi-

fied versions of the Guyafi4]) reduction technique. Recent ad-

vancements in dynamic condensation approach are due to Suayez : :

and SingH5] and Qu and F{i6]. The two approaches are iterativeaj Unsymmetric Structural System and Discrete Pa-

in nature. The initial approximation of the Guyan condensatidiRMeter Model

matrix relating the chosen master degree-of-freedom and the slavé finite element model of a structural system witdegree-of-

degree-of-freedom is updated till desired convergence is achievifdedom is governed by the following equations of motion:

While the iterative approach of Suarez and Singh is valid for . .

standard eigenproblem, the method proposed by Qu and Fu is [MI{X}+ [CliX}+[KI{x} ={F(1)} @

valid for general eigenproblem. All the above dynamic condensahere{F} is the vector of external forcegM], [C], and[K] are the

tion methods are applicable only for handling undamped symmajlystem mass, damping, and stiffness matrices of the dxder

ric systems with symmetric mass and stiffness matrices. Kane ard\. These matrices may be symmetric, skew-symmetric, or un-

Torby [7] described a method to obtain a reduced-order model fsymmetric. The standard/general eigenvalue prob(gv6]) ap-

unsymmetric systems such as rotating systems. However, fhiies to undamped systems with symmetric matrices. On the other

method suffers from the disadvantage of the necessity to havéand, unsymmetric systems are difficult to handle by the standard

prior eigensolution of the original system. procedures. To obtain the eigensolution for such a unsymmetric
A computational procedure to effectively condense unsymmetystem, one procedure is to recast El.into first-order form in

ric systems is presented in this paper. It is a two-sided procedid X 2N state space as

in that it implicitly utilizes both the left and right eigenvectors of . —

the system. The procedure is iterative and avoids explicit deriva- [MI{y}+[KNy}={0} )

tion of the eigenvectors during the iteration process at each st@gere

The method finally yields two condensation matrices that relate

the master and slave degrees-of-freedom. Further, one important —[[0] —[M]

feature of the proposed method is that element matrices pertaining [M1= [M] [C] |

to any discrete springs/dampers present in the system initially re-

main out of the dynamic condensation technique and are attached — ([M] [O] -
to the reduced-order model matrices with due consideration to the =0 K] and {y}={xx}".

boundary condition compatibility. This feature is further utilized
in obtaining reduced-order models for complicated unsymmetridie superscripT stands for transpose of a matrix.

systems by substructure synthesis. Glasgow and Né&and Li The eigenvalue problem corresponding to E).is now given
and Gunter[9] have obtained reduced-order models for rotoY

bearing systems using component mode synthesis. However, these — —
9y g comp Y [KI[®R=[MI[®RI\] @3)

for right eigenvector®R] and the adjoint eigenvalue problem by

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . o
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- [P TTK]=[N [P IM] 4)
CHANICS. Manuscript received by the ASME Applied Mechanics Division, October
7, 2000; final revision, August 10, 2001. Editor: N. C. Perkins. Discussion on tifgyr |eft eigenvector$<I>L]. [A]is the diagonal matrix of complex
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department ;
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi benvalues of the unsymr_netrlc SYStem' .
be accepted until four months after final publication of the paper itself in the ASME An.e'genvalue .SO|Ver using, forl example, a two-sided Lanczos
JOURNAL OF APPLIED MECHANICS. algorithm ([10]) yields complex eigenvalues and the left and
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right complex eigenvectorsb'] and[®R]. These eigenvectors [R]=[Ksd {([Mgml+[MsJ[RD[PRIAT PR L~ [Kgml]
satisfy the following bi-orthogonality relationships: (13)

[OTIMI[@™]=[1]  and [ TTKII®TI=[\].  (8) [S]=[KL] [([Mnd +[Msd TSHIOLINTTDL] 1~ [Kh].
. . (14)
3 Dynamic Condensation Equations(13) and(14) contain the unknown matricé&] and

To start with the dynamic condensation, let the nodal displacgs] implicitly. Once[R] and[S] are obtained, the bi-orthogonality
ment degree-of-freedom vectps be partitioned into two groups. relationships in Eq(5) vyield the reduced-order model for the

One is the master degree-of-freedom that are to be retained afngn system in the following form of eigenvalue problem:
the other, the slave degree-of-freedom to be eliminated during the R
condensation process. Let the number of master degree-of- [KrI[Pmrl=[MRI[PR]IN]

freedom be t.” The number of the slave degree-of-freedom isand

henceN-m. Let the matricegM], [C], and[K] be partitioned ac-

cording to these master and slave degrees-of-freedom. The vector [(D,LH]T[KR]=[)\][¢an]T[MR]. (15)
{y} is now ordered in the formX, ,Xm,Xs,Xs} With subscriptam . .

and s indicating master and slave degrees-of-freedom, resp%cﬁg?ﬁﬂr%dgf:d ii)/re?]e[)(rﬁXZm) stifiness and mass matricglr]
tively. If the augmented matricgdM ] and[K] are accordingly R g y

partitioned, keeping the master velocity and displacement [K]=[Kml+[Kmd[R1+[S]TKsml+[SITK<J[R] (16)
degrees-of-freedom together, the eigenvalue problem in @js.

and(4) takes the form [MR]=[M ] +[M [ R]+ [S] Mgl +[SI"TMsl[R].
_ _ _ _ @
lK_mmJ’ lK_mSI [[q>E]] - “\immj' lM_mSI {[(D'E‘]][)\] The matriced K] and[Mg] satisfy the orthogonality relation-
[Keml, [Keg | L[Ps] [Menl, [Mgd]L[Ps] ships given by
L I © oL IMAeRI=[1  and [@LITKAI@RI=TAL.
[Kmml:  [Kmd {[CDLm]] (Minml,  [Ming [[(D;]]D\]T (18)
— v ®Y 7| ro — Pl One can adopt an iterative procedure to first solvel Rjrand
[Kem],  [Ksdl (@] [Msml, [Msd] (@] 7 [S] from Eqgs.(13) and(14). The iterative procedure is started with
) initial approximation:
h _ _ _
e [R1=~[Kod "[Kord and [S]=~[KLJ [Knd". (19)
[Kmm]%lemJ' 0] } [7m ={leSI' 0] } According to Egs(13) and(14) it is required that an eigenvalue
(0], [Kmml [0], [Kmnd solution is to be obtained at each iteration step. However, from the

[Mc.] [0] [M.J [0] two orthogonality relationships in E¢18) the eigensolution can
[f = smi and [f J= sshr be avoided at each step if the following substitutions are effected
s [0], [Keml s [0], [Ksd in Egs.(13) and(14):
8 _ _ _
i ® ORI =[Mal Y Ke]  and[@LIATT0L]
_ , M
O I = (M) K" 0)
mm m With the above substitutions, the transformation matridels
_ [o], [M e and[S] and subsequentlyKg] and[Mg] are improved over a
[Mmsl=| _ ) number of steps, which can be termed as one stage. At the end of
[Mmsl, [Cmsl a stage, the eigensolution with the use of the reduced-order model
- [0], [Mq,] matrices[Kg] and [Mg], can be obtained from Eq15). The
[Msm]=[ and solution is compared with that obtained at a previous stage for
~[Msml,  —[Csml testing the convergence. The criterion to terminate the iterative
is chosen to be
N (o], [M.d process is ¢
[Msd= . 9) N
7 g -1 Paahl 1)
Nit1

Expanding the lower part of the equations in E&).one obtains
_ _ _ _ wheree is the convergence tolerance required angd, and\; are
[Keml[PR]+[Ksd [P FI=[Mnl[PRIN]+[McJ[PFI[A].  the eigenvalues obtained iah andi+ 1th iteration.
(10)

Similar expansion from Eq(7) results in 4 Substructure Synthesis
[Kine T®m" 1+ [Ksd TP 1= [ Ml TP 1IN]T The two-sided dynamic condensation technique as described
— T above condenses the internal slave degree-of-freedom and in gen-

+[Mssl [®Ps-I[A]". (11) eral can be considered as a part of substructuring approach. If the

master degree-of-freedom are specified for each of the substruc-

tures that constitute a structural systéRig. 1), the mass and

[®] be expressed in terms of the corresponding master degrgﬁﬁness matrices in Eq416) and (17) define a corresponding
of-freedom part of the right and left eigenvectpl] and[ @] equced-order model.

as Th'e reduced-order matricéd/ ] and[Kg] of each substruc-

ORI=[RI[DR d [PL1=[SI[BLT. 12y turein Egs(16) and(17) are of order 21X 2m. The correspond-

[PI=IRIPn]  and [®s]=[S][Pn] (12) ing master degree-of-freedom vector of orden ncludes the

Using the transformation matricgR] and[S] in Egs.(10) and velocity degree-of-freedom also. Thislz] and[Kg] are of the
(11), one obtains the following equations fdR] and[S]: form

Let the slave part of the right and left eigenvectpis,X] and
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Fig. 1 Substructures and coupling elements Fig. 2 Rotor bearing system and finite element model for Ex-
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R 7[MmmR]v 7[CmmR]
[(Mmmel,  [0] 16y
Kel=| or kgl (22) 4 PP
o1, [Kmmdl 14.0. 1= 1 B - First Backward Whirl frequency
In Eq. (22), [Mymel, [Cmmel and [K,,mrl are the reduced- 7] ;E-I;ithgrgmsWﬁ%r??;my
order mass, damping, and stiffness matrices of ondem. The 120 1= 2 F - Second Forward Whirl Frequeney |
matrices defining coupling elements, if arffzig. 1) can be as- 100‘_ 3 B - Third Backward Whirl Frequency
sembled at this stage. For example, if the structural system con g | 3 E~Third Forward Whitl Frequency
sists of two substructurdsandK and[ K,k ] represent the stiffness 2 %0
matrix relating the internal forces between the connecting degree z |
of-freedom of these substructures, the coupled equations of ma "_: 6.0
tion can be expressed as -
. X
Mpmels 01 ]({\y) [[Chmals [0 ][1x\} s 40
K GKy[ T K K 5
[0],  [Mumel/lZmt) | [0].  [Chmal] [ {Xm} & 20
+[ [Khmd,  [0] [{XI"”}}HK ]({x'c}” o 0.0
K IK K =Ys- .
(0], [Kimel ] [{Xm} xcl 20 4
(23) _4_0~J|1|I|I|I|I1I|I
In Eqg. (23) the superscriptd and K stand for thelth and Kth 8 10 12 14 16 18 20 22 24
substructure, respectivelyx!} and {x<,} represent the master (2 No. of Master dof
degree-of-freedom vector of the two substructufes,} is the 14.0

vector of common degree-of-freedom between Itre substruc-

; ; I
ture and the coupling elemelK and is a subset dix',} vector. | B Fitst Bakward Whitl Frequsioy

o ' . 12.0 —
In a similar fashion{xX.} is the vector of common degree-of- L F - First Forward Whirl Frequency
freedom between thKth substructure and the coupling element B 2 Bi~Second Backward Whirl Erequericy
. K . h 100 2F- Segond Forward Whlll‘l Frequency
IK and is a subset ofx",} vector. Equation23) describes the X 3 B - Third Backward Whirl Frequency

usual displacement method of assembly for structural analysis 3 F - Third Forward Whirl Frequency
The assembly continues to cover all other link elements present it
the system. The procedure is applicable in case these elemen
also possess mass and damping effects. The final assembled ma
damping, and stiffness matrices of the structural system is of the
order given by the sum of the master degree-of-freedom of eacl
substructure. These matrices are unsymmetric and are recast in
the first-order form as in Ed2) to obtain the final eigensolution.

0
o

% error in system whirl frequencies
IS o
S o

it
=}

5 Some Implementation Issues

It is apt here to elaborate some of the implementation issues
involved and adopted in the condensation technique. Especiall
when applied to large-order systems, it is important to avoid the
direct matrix inversions in Eq$13) and(14). Moreover, the size 2.0
of the matricegK 4 and[K" is governed by the number of b)
slave degree-of-freedom in the system/substructure and is large
enough to require special storage techniques. In the present @3 (a Example Problem 1. Percentage error between full
densation algorit_hm these sparse, banded, and unsym_metric Ml reduced-order model whirl frequencies. Case 1. System
ces are stored in blocks and the Crout decomposition meth@gh isotropic bearings.  (b) Example Problem 1. Percentage er-

([11-12)) is used to obtain the lower and upper triangular matrior between full and reduced-order model whirl frequencies.
ces. This blockwise storage and decomposition is accomplishease 2. System with orthotropic bearings.

8 10 12 14 16 18 20 22 24
No. of Master dof
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Table 1 Configuration of the shaft in Example Problem 1

Axial Axial
Distance Internal Quter Distance Internal Quter
Node From Shaft Diameter Diameter Node From Shaft Diameter Diameter
No Left in m inm inm No. Left in m inm inm
1 0.0 - 0.0051 11 0.1651 - 0.0127
2 0.0127 - 0.0102 12 0.1905 - 0.0152
3 0.0508 - 0.0076 13 0.2286 - 0.0152
4 0.0762 - 0.0203 14 0.2667 - 0.0127
5 0.0889 - 0.0203 15 0.2870 - 0.0127
6 0.1016 - 0.0330 16 0.3048 - 0.0381
7 0.1067 0.0152 0.0330 17 0.3150 - 0.0203
8 0.1143 0.0178 0.0254 18 0.3454 0.0152 0.0203
9 0.1270 - 0.0254 19 0.3581 0.0152 0.0203
10 0.1346 - 0.0127

using out-of-core memory. It is required to factorize the matricesx 2 damping coefficients matrices. The bearing coefficients act

|Ksd and[Kse]T only once and the factored matrices are used in the two transverse degree-of-freedom of the rotating shaft ac-

solving Egs.(13) and (14). A same block factorization procedurecording to the following equation:

is uniformly adopted during the tridiagonalization involved in ob- C c .

taining the eigensolution by Lanczos meth@0]). [ vy YZH‘JVJ
C,y Cyjll:

Kyy Kyz [le
+ K, sz 0 {F}. (24)
gy, andq, are the transverse degree-of-freedom at the interface

Numerical results are obtained for two examples of rotonode on the shaft at which the bearing is located and are included
bearing systems using the dynamic condensation procedure ifethe master degrees-of-freedom vector. Thus a bearing element
scribed above. Rotor-bearing systems are characterized by plkgiween two nodes is here represented by<al4natrix given by
ence of gyroscopic terms that arise due to rotation and circulatory

6 Numerical Examples

terms due to either orthotropic bearings or shaft damgiag— [Kb]z[ (K] —IK ]} an

15)). —-[K']  [K']
The gyroscopic terms are skew-symmetric and the circulatory , ,

terms are unsymmetric. The size of the eigenvalue problem is b | [C1 —[C]

large, as it is in general recast into first-order form of state-space (€)= —[Cc'] [C] where

variables(Eq. (2)). It is appropriate for one to resort to a dynamic

condensation before a response analysis is performed on such Kyy Kyz Cyy Cy;

complicated rotor-bearing systems. '] K K and [C']= c. . (25)
The rotating shaft in the two example problems is mounted on zy ez zy ez

hydrodynamic journal bearings. It is well knowi5]) that jour- Here, dynamic condensation can be conveniently performed on
nal bearings are characterized by a2 dynamic stiffness and the system without regard to these link elements such as bearings

1.0E+5
F - Forward whirl
B- Backward whirl
F
8.0E+4 — — T _ - ---- /T
T T T e~~~
E 6.0E+4 ¥ R
g &
= (4]
g R
2 - 2 F
2 === g~ - - - - - - - - - == - - -
2 =
= & B
§ 4.0E+4-—4-———————°3$ ————————————————
20+4f- /0 F
- et B
0.0E+0 1 | 1 | i | ! L L ! 1

0.0E+0 2.0E+4 4.0E+4 6.0E+4 8.0E+4 1.0E+5 1.2E+5
Rotation speed in rpm

Fig. 4 Example Problem 1. Campbell diagram for rotor-bearing system
after dynamic condensation with 12 master degrees-of-freedom. —iso-
tropic bearings, — — —orthotropic bearings.
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‘ with speed, Q;
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Fig. 5 Example Problem 2. (a) Dual rotor-bearing system. (b) Two sub-
structures. Finite element model for the inner and outer shafts of dual
rotor, disk, and bearings.

and any other coupling elements. One can integrate these elemédse 1 Isotropic,,=K,,=4.378E07 N/mK,,=K,,=0.0
with the final reduced-order model at the end of the iterative pr@ase 2 Orthotropick,,=K,,=3.503E07 N/m, K, ,=K, =
cess with due consideration to the element connectivity. —8.756E06 N/m.

Example 1. The first example refers to a rotor bearing system_The convergence of the reduced-order model is studied first
([16]) with a nonuniform flexible shaft mounted on journal bearith respect to a different number of master degree-of-freedom.
ings (Fig. 2). The details of the shaft configuration are given iff he number of iterations over which the condensation matrices
Table 1. Other shaft properties are: Young's modal@s076& Mg andKg are updated is kept at 10. At the end of each such
+11 N/m?, and mass density7806 kg/ni. The full model has stage the eigensolution is obtained and checked for convergence.
19 nodes and 18 beam elements with 76 degree-of-freedom. THe number of stages is taken to be 10 that is found to be enough
each node is represented by two translatory and two rotatiofiat achieving a converged solution. Figure 3 shows the percentage
degree-of-freedom. The shaft carries a disk of makd Kg at error in the system eigenvalues versus the number of master
node 5 and with polar moment of inerti®.00203 Kg-m and degree-of-freedom. The error is with respect to the eigenvalues of
diametrical moment of inertia0.00136 Kg-m. The bearing the full model. The eigenvalues stand for the natural frequencies/
properties are: whirl speeds of the rotor bearing system. The rotation speed is

Table 2 Critical speeds in rpm for rotor bearing system in Example Problem 1

Reduced-Order Model With 12 Degrees-of-Freedom

Full Model Isotropic Bearings
Backward Forward Backward Whirl Forward Whirl
Whirl Whirl
Mode Value % Error Value % Error
1 15704 16883 15696 —0.051 16890 0.042
2 46152 49250 46118 -0.074 49288 0.077
2 68827 83580 69354 0.766 84210 0.754
Full Model Orthotropic Bearings
Backward Forward Backward Whirl Forward Whirl
Whirl Whirl
Mode Value %Error Value % Error
1 14004 16396 14008 0.029 16418 0.013
2 39429 47802 39540 0.028 47754 —0.100
3 63106 80028 63424 0.504 80676 0.810
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Table 3 Dynamic stiffness coefficients of bearings in Example Table 4 Properties of the disk elements in Example Problem 2
Problem 2

Substructure Node Mass I lq

Substructure  Node Kyy Kyz Kgy K,z No. No. in Kg in Kg-m? in Kg-m?
No. No. N/m N/m  N/m N/m 1 2 4.904 0.02712 0.01356

1 1 2.62795¢-07 0.0 0.0 2.62795e07 1 8 4.203 0.02034 0.01017

1 9 1.7519¢-07 0.0 0.0 1.7519€07 2 2 3.327 0.01469 0.00734

1 7 8.7598¢- 06 0.0 0.0 8.7598e06 2 4 2.277 0.00972 0.00486

2 1 1.7519e-07 0.0 0.0 1.7519e07

2 5 8.7598¢- 06 0.0 0.0 8.7598¢e06

] ) ] ] As can be observed form the values listed in the table, the per-
fixed at 10,000 rpm during the computations. Figute) Zorre-  centage error between the reduced-order model and the full model
sponds to Case 1 of isotropic bearings and Fib) & Case 2 of s |ess than one percent. This is true for isotropic as well as the
orthotropic bearings. Compared to the eigenvalues of full mod@jsthotropic bearings.
it can be observed that with the condensation technique described
in this paper, a reduced-order model with 12 master degrees-ofExample 2. This example refers to a dual rotor-bearing sys-
freedom is sufficient enough to keep the percentage error of tén ([8,17]) with two shafts of different rotating speeds. The sys-
first six predominant eigenvalues within 0.5 percent. These 1@m is shown in Fig. &). The material properties for the two
degrees-of-freedom include the translational degrees-of-freedshafts are: Young's modules2.069e+11 N/n?, and mass
corresponding to the disk node 5, the bearing nodes 11 and @Bnsity=8304 kg/ni. As shown in Fig. 5, the shafts are supported
and nodes 10, 13, and 1Fig. 2. on journal bearings out of which one is an intershaft bearing. The
Figure 4 shows the Campbell diagram for the rotor bearingearings are isotropic and undamped. The dynamic stiffness coef-
system. The Campbell diagram is a graph showing variation fi€ients for these bearing elements are given in Table 3.
shaft whirl speeds with respect to the rotation speed. The diagranThe full finite element model has 15 nodes, 12 beam elements,
helps in identifying the shaft critical speeds. For example, @and 60 degrees-of-freedom with two translational and two rota-
shown in the Fig. 4, the critical speeds for synchronous vibratidgional degrees-of-freedom per node. The speed ratio is taken as
are obtained by the intersection of a unity slope line with the whifl.5 with inner shaft rotating at a lower speed. The two shafts are
speed curves. It is obvious that these speeds of rotation cateeen as two substructures for dynamic condensation as shown in
critical state of resonance due to inherent shaft/disk imbalanEey. 5b). For the inner shaft, the number of master degrees-of-
that generally exist in rotor bearing systems. Figure 4 includésedom is chosen to be 10 that include translational degrees-of-
whirl speed curves corresponding to both isotropic and orthotrogieedom corresponding to the two disk locations at nodes 2 and 8
bearings. The nature of the whirl—forward or backward—iand three bearing locations at nodes 1, 7, an&i§. 5b)). The
marked in the figure as per the displacements at node 5. Tdlisk elements on the two substructures have the properties speci-
critical speeds for the rotor bearing system are given in Table f&ed in Table 4.

Rotating speed of outer shaft, Q 2 (rad/sec.)

0 750 1500 2250 3000 3750
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% F
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I
8

g

500 —

0 | | I I | | 1
0 500 1000 1500 2000 2500

Rotating speed of inner shaft, Q; (rad/sec.)

Fig. 6 Example Problem 2. Campbell diagram for dual rotor-bearing sys-
tem after dynamic condensation  (with undamped isotropic bearings ).
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Table 5 Critical speeds in rad /sec. for dual rotor-bearing system in Example Problem 2

Inner ShaftQ,

Full Model Reduced-Order Model
Backward Whirl Forward Whirl
Backward Forward
Mode whirl Whirl Value % Error Value % Error
1 660 863 657 —0.46 873 1.26
2 1425 1607 1428 0.21 1615 0.50
3 2125 2283 2153 1.32 2322 1.71
Outer Shaft),=1.5"Q,
Backward Whirl Forward Whirl
Backward Forward
Mode whirl Whirl Value % Error Value % Error
1 687 822 684 —-0.44 827 0.61
2 1475 1590 1463 -0.81 1588 -0.13
3 2190 2290 2200 0.46 2309 0.83

The master degrees-of-freedom for the outer shaft is chosen tdmplementation issues such as the necessity to adopt blockwise
be 8 that includes translational degrees-of-freedom correspondsigrage and decomposition of the sparse, banded, and unsymmet-
to the two disk locations at nodes 2 and 4 and two bearing loade matrices using out-of-core memory are also highlighitethe
tions at nodes 1 and @ig. 5(b)). Thus each node is representegaper. Further, while the effect of the number of master degrees-
by two translatory and two rotational degrees-of-freedom as @f-freedom on the convergence rate of the condensation procedure
Example 1. Reduced-order models are obtained for the two shaisllustrated, no special techniques are suggested in the selection
independently. With the chosen master degrees-of-freedom for tifethe particular master degrees-of-freedom. The issue needs fur-
two substructures, the convergence of the individual reducetther study that is beyond the scope of the present paper.
order models is found to be satisfactory as in the case of Example
Problem 1.
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1 Introduction the identified complex modes also constitutes an important prob-

lem, and the study by Sestieri and lbrahifiv] presents a well-
Pcumented discussion. One assumption often employed is that
e vibrational modes of the second-order model are uncoupled

System identification, in the most general sense, can be
scribed as the identification of the conditions and properties
mathematical models that aspire to represent real phenomen bdal damping In this case, arguably the most often employed
an adequate fashion. The choice of such models is very mu P » arg y ploy

S . S thod to retrieve the undamped modal parameters is the so-
dependent on the type of application one considers. In finite e Sllled standard techniquie.g., see Imregun and Ewifsg], Ibra-
ment formulations, identification of physical parameters genera%

) L . . m [19], and Alvin [20]). It is well known, however, that this
refers to the identification of the mass, damping, and stiffne U : - ’ ' ;
parameters in the second order matrix diﬁergnti%]"gll equations proximation loses its validity when the system under consider-

possible approach is to identify these parameters directly froﬂon is highly coupled. To overcome this limitation, many authors

experimental dynamic dataee, for example, the works of Agba-"2Ve focused their attention on how to retrieve the undamped
modal parameters from complex modal parameters for the case of

bian et al.[1] and Smyth et al[2]). However, the most widely : ; . .
e P neral damping. Some of the most noteworthy discussions in-
employed approach consists in identifying the modal parameteqr%de the woPksgof lbrahini19], Alvin and Park[21ﬁ/ Zhang and

T ¢l
of the system, and to use them to update a pre-existing fin(t -
element model. Some of the noteworthy efforts and discussions[ IIezraenCtt[éﬁ],e\t(a}arll?z%nda:gH;as;}m,:IE/zlré]et al.[24), Tseng et al.

this direction are those of Ewins], Mottershead a.nd. Friswell Taking the inverse problem one step further, one might be in-
[4], Berman(5], Baruch[6,7], and Beck and KatafygiotitS]. terested in directly obtaining the parameters of the second-order
The identification of the parameters in a first-order differentiaf

equation formulation has also received considerable attention,fné)rﬂetlhg\ilgggﬂggg St{ftz_;o ;gg';\ged;]evzreigggdmgiﬂﬁgggr?geit;r_s
evidenced by the works of Ibrahim and Mikulc[i®], Ibrahim P ! 9

pose different restrictions on the number of sensors and actuators
[10], Vold et al.[11], Juang and Papfid2], Juang et all13,14, employed, assuming that all the modes of the structure have been

and Luset al.[15,16. However, if one starts with a state-space . . > - :
model and s o idently th parametrs f he second orflEEESSLY BTG, The oSt e eenent s Lol
model, issues such as nonuniqueness of the solution have tonﬁg 9 y

consiered,malking such an “myerse” prolem e complex. [)0C2%, WIEh s ecussed by wang and Vet Laer on
sually, the modal parameters required for updating structu -
models gre the undaFr)npe(dormab m%dal param?aters gwhereas quiring that only the number of sensors should be equal to the

when one works with the first-order formulation, the identh‘ie%u.mber of identified modes, with one co-located sensor—actuator

. ir. A further generalization was presented by Tseng et al.
modal parameters are complex, and correspond, in some sens 2?,’26] for the case when the number of actuators is equal to the

the damped modal parameters of the second-order formulatipfner of second-order modes providing the most general solu-
Therefore, the retrieval of the undamped modal parameters fr(?fﬂn available for a full set of actuators or sensors, with one co-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF located sensor—actuator pair.
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- In this study, we further improve on the requirement concerning

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decemthe number of sensors and actuators. Based on some QOHCEDtS
ber 2, 2001; final revision, February 28, 2002. Associate Editor: R. C. Bensopreviously discussed by Sestieri and lbraHifi¥], and Balms
Discussion on the paper should be addressed to the Editor, Professor Robert%gf)] it is shown that the physical parameters of the second order

McMeeking, Department of Mechanical and Environmental Engineering Universi del b btained b . th luti r tri
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep! €l can be obtained by using the solution or a symmetric com-

until four months after final publication of the paper itself in the ASMEJ&NAL OF  Plex eigenvalue prot_Jlem. The minimum requirement for the pro-
APPLIED MECHANICS. posed methodology is that all the degrees-of-freedom should con-
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tain either a sensoror an actuator, with at least one co-located L M|y
sensor—actuator pair. It should be noted that this solution implic- [ A H A} =1 (4a)
itly contains the solutions for the cases with full set of sensors ¥ M0l
and/or full set of actuators, and therefore, the approach discussed AR 0 } "
in this study provides a more general solution for the inverse }:—A (4b)
problem. YA [0 —MIYA

then, for aproportionally damped systerthe real and imaginary
parts of the components of these complex eigenvectors are equal
2 Symmetric Formulation of a First-Order Dynamic  in magnitude.
Model Once the symmetric eigenvalue probléiqgs. (4)) has been
Eolved, we can now conveniently rewrite Eq8) by using the

One of the most well-known linear time invariant models fo ansformatiorz(t) = [ 4" (#A) T]TE(t) so that

dynamical systems is undoubtedly the matrix form of Newton

second law of motion written for discretized spatial domains, i.e., Uty =ALt)+ Y Bu(t) (5a)
MGt + Lg(t) +1Cq(t) = Bu(t) y(t)=Cpill(t). (5b)
Cpa(t) For ease of exposition, let us indicate wih(k,:) andM(:,I)

y(H=| C,a(t) @ the kth row and theith column, respectively, of a generic matrix

C.a(t) M. The equations of motion rewritten in for(6) have the impor-
ad tant property that, for a generith degree-of-freedom that con-

where q(t) indicates the vector of thégeneralizeyl nodal dis- tains a co-located sensor—actuator pair,

placements, with () and () representing, respectively, the first SN T TR V1T

and second-order derivatives with respect to time. The vector ) c‘_’(l")¢ Lo BCDT o ©)

u(t), of dimensionr X 1, is the input vector containingexternal and this property will be of great usd) for determining and

excitations acting on the system whijét) represents the mea- Scaling the eigenvectors, ari@) for developing the concept of

surement vector, which may contain any combination of nodHlPut-output equivalence, as presented in detail in Section 4.

displacements, velocities, and/or accelerations. FoNalegree- 3  |dentification of the Physical Parameters

of-freedom systemM e RNN, £ e RVN and 1ICe RN are

. a4 - ) . of the System

the symmetric positive definite mass, damping, and stiffness ma- ) o ) ]

trices, respectively, whild e 9tV is the input matrix. The ma- The proposed identification algorithm consists of two well-

trix [cgcjc;]Temme represents the output matrix that mafjeflned phaseg1) the determination of a first-order model of the

incorporate position, velocity, and acceleration measuremerf¥Stem: and?) the transformation of such an identified model

with m denoting the total number of outputs. Into a second-or_der model. . . . .
By defining a state vecta(t) =[q(t) Ta(t)T]", the equations of From ge_nerz_;\I input-output dgta, itis p_033|ble to identify a state
motion in (1) can be conveniently written as’ space realization in some arbitrary basis, and such a realization
y can be expressed as

L K< SOH) —
o [0+ 2(t)= lgu(t) (2a) X(O)=AcX() +Beu(t)
M M Y(t)=Cex(t)+Deu(t) ()
y(t)=[C, 0]z(t) (2b)  where nowAce RN BLe RNXT Coe RN, and D¢

where, for ease of exposition, we have considered only positigh" . are continuous time system matrices. In this study, an
measurements in the output equation of E@. However, the ERA/OKID based approach, as discussed by Juang ¢13/14
following results are true for any type of measuremeptsitions, and Luset al.[15,16], was used for the identification of the dis-
velocities, or accelerationsand the generalization to velocity andCrete time system matricésamely the matrice®, I', C, andD),
acceleration measurements will be discussed in detail in a subdBd these discrete time matrices were converted to their continu-
guent section. The advantage of rewriting Ed3.into Eqs.(2) is 0US time counterparts using the zero-order hold assumption. By
that now the associated eigenvalue problem is kept symmetric difsidering the transformation= ¢, the continuous time system

can be written in a matrix form as of Egs.(7) can also be written in modal coordinates as
L Mly] [-K O [ ” o) =A6(t)+ ¢ 'Beu(t) (8a)
= 3
Mmoo lsar o0 mua @) y(1)=Ccet (8b)
where gnson=[ ... P] is the matrix containing the where the matrixA contains the continuous time eigenvalues of
eigenvectors of the complex eigenvalue problem the identified state space model, apdof order 2N X 2N, is the
matrix of the corresponding eigenvectors. The mdiixhas been
()\?M+)\i£+ )y =0 omitted in Eq.(8b) because it is independent of coordinate trans-

and A,y oy IS the diagonal matrix of the complex eigenvaluegorm""tlons_'1It is noteworthy thét in the system .Of E¢8). the
N, =0 jw; (ith j=y—T). When all the modes of the structureProducts¢ "Bc andCc¢ appear; these products impose a strong

are underdamped, all the eigenvalues appear in complex conjug{N fation on the order of the second-order model to be identified,
X A e ose dimensions are now constrained either by the number of
pairs, i.e., they can be ordered such thgt{_,=\3 with i

~ 10 N, where the superscrifit) denotes complex conju- actuators, or by the number of sens6Fseng et al[25,26]).
A A p . P IU" " if the first-order system of Eq€7) was identified using data
gate. This implies that the complex eigenvectors have the S|m|l[%rat actually came from the second-order model of €, the
property thatyy =43 for i=1,2,...N. In general, these ,qe|s represented by EqS) and(8) are different models of the

eigenvectors can be arbitrarily scaled; however, if the scaling dgme system. Therefore, we look for a transformation mafix,
chosen such thdsee Sestieri and lbrahipd7] and Balme [28])  ihat relates these two representations, i.e.:

YT MYPA+ AP M+ " Lop=1 T INT=A (9a)
AP MYA— P ICP=A T o Bc=¢'B (9b)
or in matrix form CcopT=C,i. (%)
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If there are no repeated roots, it is easy to show that the transferN). If there is a sensor at theh degree-of-freedom then th¢h

mation matrix is diagonal, i.eT=diagt, t,, . . . ,tyn) @and its val- row of the matrixgs can be evaluated using Ed.0c), i.e.,
ues are complex conjugate. By examining B3, it is clear that ) £
the matrixZ"has a twofold effect(1) to transform the eigenvec- (k1) =Cc(k,)) T (13)

tors from those of a nonsymmetric eigenvalue problem to those of,
a symmetric eigenvalue problem, af®) to properly scale such
eigenvectors. Here we discuss the identification of this transf
mation matrixZ”and the eigenvectorgs when there are no re-
peated roots, and the input and output matri@sandC,, re-
spectively of the finite element model are known. These input N (-1, -1pE . |\ T

and output matrices are assumed to contain binary information, Wk)=(T @ Bel(:,k)) (4)

i.e., in the case of the input matrig, the coefficient in théth row Clearly, this argument is valid for all thé degrees-of-freedom
(i=1,2,...N) andjth column (=1,2,...y) of Bis 1if the and so all the rows of the matrig can be evaluated. It should be
jth actuator is placed on tti¢h degree-of-freedom and this coef-noted that, for théth degree-of-freedom that contained the co-
ficient is O if thejth actuator is not placed on thiéh degree-of- |ocated sensor—actuator pair, one can use either(Bj.or Eq.
freedom. Similarly, the coefficient in theith row (i (14), since they lead to the same result by the co-location require-
=1,2,...m) andjth column (=1,2, ... N) of the output ma- ment in Eq.(11).

trix Cp is 1 if theith sensor is placed on théh degree-of-freedom it there is a full set of sensorgank(C,) =N, CIEECP‘ and

and this coefficient is 0 if théth sensor is not placed on théh CE=Cy), or a full set of actuatorérank(B)=N, BE=18, and

degree-of-freedom. E_ . .
To present the proposed methodology in a concise manner,'%= Bc), the scaling factors are still evaluated from Egl).

us assume that the input and output matrices of both represertACe the scaling factors are evaluated, one can identify the com-
tions(in Egs.(9b) and(9c)) have been expanded to incorporate alf'€x elgenvector matrixs using

the degrees-of-freedom. This is most easily achieved by incorpo- -1 -

rating columns of zeros in the input matrid@. andB) and rows Cp CobT=¢ (15)

of zeros in the output matricd€c and C,) for the degrees-of- when there is a full set of sensors, or

freedom that are either not excited or not measured. Furthermore,

assume that these input and output matrices have been arranged so T lo BB 1=y (16)

that theith column of the input matrix corresponds to thé
degree-of-freedonfand hence there will be a column of zeros i
there is no actuator placed on thth degree-of-freedojm and
similarly, theith row of the output matrix corresponds to tith
degree-of-freedonta row of zeros if there is no sensor on ftile
degree-of-freedomNow the previous transformation Eq8) can
be written in an “expanded” form as

On the other hand, if there is no sensor at kitle degree-of-
4F_eedom then CE(k,:)¢= 01xon. However, if a degree-of-
reedom is instrumented with either a sensor or an actuator, the
kth row of the matrixis can be evaluated using E.Ob) as

1When there is a full set of actuators. Clearly, these two cases can
be regarded as special cases of the general formulation presented
in this section.

Once the properly scaled eigenvector maifiis evaluated, the
mass, damping, and stiffness matrices of the finite element model
can be obtained using the orthogonality conditions in Edjs As
discussed in Balnse[28], algebraic manipulations on Eqéd)

T IAT=A (10a) leads to the following identities:
T o BE=y'BE (100) [ c Mr 0 M1 }
= -1 _ aq-1 -1
CEpT= CE‘/’ (100) M 0 M MTLM
vl

where Bg, BF, Cg, andC; are the expanded versions of the = }

matricesBc, B, Cc, andC,, respectively. YA YA

The identification of the transformation matrikand the prop- v YAy
erly scaled complex eigenvectagscan be investigated by study- = T 0T (17a)
ing a general limit case, since it can be shown that the case of full YAy PATS
set of sensors and the case of full set of actuators are special cases i 0 11 -1 0
of the general approach. Let us assume that each degree-of- _
freedom containgither an actuatoor a sensor, with one degree- [ 0 M} { 0 Ml}
of-freedom containing a co-located sensor—actuator (eEnce T
r+m=N+1). With the notation introduced in Section 2, if the :_{ ¥ }A—l{ ¥
co-located sensor—actuator pair is atittredegree-of-freedom the YA YA
well-known co-location requirement can be written as ALY g

Ch(i ) g= (W BT, (11) A

Using the co-location requirement, the transformation ma®iX |, order for Egs(17) to be valid. it is necessary that
can be evaluated from Eqg&l0Ob), (10c), and Eq.(11) as as(17) ' 4

— T\—1 — 2,07
CE(i,)@T=(T ‘¢ BE(:,iI)T; M=AE) ™, L= MPA M, (189)

K== (YA ")™Y gap’=0 (180)

Ca(i,)eT?= (¢ 'BE(:,)". (12)
and Egs.(18) provide the required expressions for the mass,

Since the matrixZ is diagonal, eacly; (i=1,2,...,N) can be . ; ; _
uniquely determined from Eq12). Once these scaling factors aregamplng and stiffness matrices of the second-order model of the

obtained, what is left to be determined is the complex eigenvectc}?Stem'

matrix . 3.1 Observations. There is a sign choice for the square
The information pertaining to a certain degree of freedom i®ots when one solves for the scaling factoritsee Eqs(12));

embedded either in the input matrix or in the output matrix. Goingowever, this does not have any effect on the identified mass,

back to Egs.(10), the output matrices in Eq10c) essentially damping, and stiffness matrices. To investigate this point, first let

contain information about onlyn degree-of-freedomwith m  us note that a sign change in the scaling fa¢tarauses a sign
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change in théth complex modey; . This sign change ik has 4 Concept of Input-Output Equivalence

nmoaterif)f(ecc;r?rg(athvsri;rt];ssfj\smatnx, since the expression for the M35 he formulation presented in this study has one main advantage
over previous studies, in the sense that the methodology presented
M=(AY") I= (Nt + Nty + ..+ Aonondboy) t here has more general theoretical implications about the number
T T of sensors or actuators that can be used in dynamic testing. In
=M= (=) (=) (o) + ... order to clarify this point, let us consider &hdegree-of-freedom
_ T -1 system. By taking the Laplace transform of E(f$.and by com-
FAan( = Yan) (— Yn)) (19) bining the two transformed equations, it is possible to obtain an
and this expression is clearly invariant under a sign change fexpression that relates the input transform vedifs), and the
any of the complex eigenvectors. Analogous arguments can detput transform vectoiy (s), as
used to show that the damping matiék and the stiffness matrix 1T
IC are also invariant under a sign change for tige (i Y(8)=Cpiisl —A] "4 BU(s)=C,H(s)BU(s)  (22)
=12,...,N). ] ] where the matri(s), of dimensionN X N, represents the trans-
On the other hand, a change in the ordering of the rows of the function matrix of the system. The complete knowledge of
complex eigenvector matri changes the final form of the mass,j(s) would allow one to determine the response of the system at
damp_lng, and stiffness matrices in the sense th_at two dlf'ferqmy point for an arbitrary input applied at any degree-of-freedom
ordering schemes lead to two different sets that differ onI_y by tf&eaﬂng a complete predictive model of the system. Hence, the
arrangement of rows and columns. In fact, if we consider thgya| of any identification methodology should be the determina-
expression in Eq(19) for the mass matrix, an interchange betjon of the matrixH(s). For this purpose, the well-known prop-
tween thekth andlth rows of  clearly leads to an mterchang_eerty thatH(s) is a symmetric matrix will be of great help. Again,
between thekth andlth rows and columns of the mass matrixfor ease of presentation, we consider only displacement measure-
However, this rearrangement also takes place in the damping afnts but analogous formulations can be derived for velocity and
the stiffness matrices. In conclusion, this nonuniqueness is equi@geleration measurements, as shown before.
lent to the reordering of the degrees-of-freedom in the represeny et ys first consider the case where, in the identification pro-
tation of Eq.(1). o cess, we haveN outputs andN inputs available(m=N and r
In the foregoing discussion, it was assumed that there was only\). This will correspond to the case df co-located pairs of
one co-located sensor—actuator pair, but in general, it is possiblésors and actuators. In the notation of Section 3, this case cor-
to have more co-located sensors and actuators. These extra ¢880nds to having,=CE and B=BF and the matrixH(s) is
ditions are redundant if the system is noise free, i.e., the scali Pectly determined.p P
factors obtained by investigating one co-located sensor—actua Off the system has been identified usiNgoutputs and 1 input
pair also satisfies the co-location requirement of any other cg- =N andr=1) with the ith output co-located with the input
Io<_:ated sensor—actuator pai_r. However, in the presence of nois%d theith column of the transfer function matrkd(s) can be l
mg*gﬂ?ﬁege&t t‘ﬁepg‘;gfrig,gg:‘ :t'ﬁgfc‘)u?#?;ﬁ;gj%g?;ﬁ*;;otﬁg‘& ctly identified. This will be equivalent to knowing the matrix
cfects of nse o fh proposed approach,he reader  eferedfunce, I £ 22 e MAITCy s e wentty mat an.
the work of Lus[29)). . In this case(N outputs and 1 inpiit it is well known that the
p(HysicaI parameters of the second-order system of @gsan be
retrieved from the identified state-space model, as discussed pre-
viously by many authorgsee, e.g., the works of Alvin and Park

acceleration measurements, the output equation in(Bgsan be
rewritten as

« for velocity measurements: [21] or Tseng et al[25,26]). _
" On the other hand, if the identified system Wa@puts and 1
y(tH)=[0 C,] WA L) =C,PpAL(1) (20) output(m=1 andr =N) with theith input co-located with théth

. output, only theith row of the transfer function matril(s) can
+ for acceleration measurements: be directly identified. In this case, the matrig in Eqs.(22) is the
v identity matrix, and analogous to the previous case, it is possible
llf/\} L) =CpA2L(t) + CopA " Bu(t). to completely determine the matrik(s). A solution for this case
(1) Was presented by Tseng et (25,26, _
In system identification literature, these two previous cases are

Clearly, these changes lead to some alterations ir{9eg. accord-  considered as the two limit cases. In fact, there is no methodology
ing to the type of measurements used: available that allows us to combine information coming from
outputs and inputs, and the possibility of combining these two
types of information is one of the innovations of the proposed

Ce@T=C.pA? for acceleration measurements. approach. To present this g_eneralization, Iet_ us identifyl\bn

degree-of-freedom system with outputs andr inputs (with m
Analogous to the output matri€,, the output matrice€, and <N andr<N and m+r=N+1), with one co-located sensor—
C, also contain binary informatiofas discussed in Section.3 actuator pair on théth degree-of-freedom. At this point it is use-
Therefore, all we have to do to use the algorithms and discussigasto remind the importance of having at least one pair of co-
of Section 3 is to us€c¢A 1 in Eq. (9c) for velocity measure- located sensor and actuator for the determination of the
ments orCc@A 2 in the case of acceleration measurements. It tsansformation matrixZ; which leads to the presence #fl in the
noteworthy that, in the case of acceleration measurements, omy-r =N+ 1 condition. What is noteworthy in this case is the fact
the first term enters in the identification process while the secotitht neitherC, nor B are squardidentity) matrices and this im-
term, independent of the transformation matrix, needs to be gidies that neither a column nor a row Hii(s) is fully identified.
counted only for simulation purposes. Due to the co-located sensor—actuator pair ai thelegree-of-
In general, one can possibly use all types of measuremefrsedom the entry at thigh row andith column ofH(s) (H;(s))

simultaneously, and in that case each row of the m&gix must is identified. Now, if we consider an input on tihéh degree-of-
be handled separately with regards to the changes discusfeddom and an output on theh degree-of-freedom, we are ca-
above. Once appropriate alterations are made according to pable of determinindd, (s), which represents the component of
type of sensor one uses, the formulations and discussions pis) on thekth row andlth column. The main innovation in this
sented in Section 3 remain unchanged. study is that the formulations developed herein allow us to use the

y(t)=[0 ca]

CcT=C,A for velocity measurements
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Table 3 Identified discrete time matrices of the state-space
model for the uncoupled damping case

$ x 10

9.9520 0.0956 -0.6987 0.2243 0.0072 0.0178
-0.0761  9.8881 -0.5836 -0.6557 0.0264 0.0032
0.6886 0.5640 9.9450 -0.0075 -0.4241 -0.0190
-0.2833  0.7991 0.0135 9.8893  0.1779 -0.0022
0.1586 -0.0056 0.4669 -0.1255 9.6269 0.8757
0.0158 -0.0335 -0.0190 0.0679 -1.0219 9.9322

Cx 10

1.6132 -1.2168 04631 -1.1516 0.1377 -0.0220
Fig. 1 Three-degree-of-freedom system considered for the ap-

plication of the proposed approach 1.4748 0.6048 1.8841 0.2602 0.2798 -0.0377
r’x10
property thatH(s) is symmetric, and hence even though we have 0.4917 0.0904 02763 0.0800 -2.5024 -0.4362

not identified the componemi (s), we can useH,(s) instead.
Therefore, if all the degrees-of-freedom have either an actuator or
a sensor, the entirgh row and/orith column of H(s) can be
determined directly. This implies that it is possible to transform
the general case of sensors and actuators to an equivalent case o
of a full set of sensors or of a full set of actuators. This has bedfe second-order vibrational modes, and therefore, more conven-
possible because of the concept of “input—output equivalencejonal methods that employ the modal damping assumption are
so that for this methodology, it is indifferent to have either anot applicable. Furthermore, we assume that the system is excited
input or an output at each degree-of-freedom. ) by only two actuators, located at the first and the second degrees-
This concept of input—output equivalence is possible becausefreedom and that accelerations are also measured only at two
of the particular eigenvector basis discussed, i.e., the eigenvecigégrees-of-freedonfsecond and third degrees-of-freedowith
for the symmetric eigenvalue problem of the system in EB5. this particular setup, methodologies that require either a full set of
On the other hand, if we were to use the eigenvectors of thensors, or a full set of actuators, are also not applicable.
nonsymmetric problem, the transpose of the eigenvector matrix inThe state-space model is identified using the simulated pulse
Egs. (9a) would be replaced with the inverse of the matiix response data of the systefwith a sampling time ofAT
(dimension N X 2N), and hence, we would be limited to the case-0.05 seg, and by employing the ERA/DC algorithrduang
of either a full set of sensor@lvin and Park[21] or Tseng et al. et al.[13]). Using the identified state-space models for both the

-0.4112  1.2005 02179 -1.2017 0.1888  0.3338

[25,26) or a full set of actuator§Tseng et al[25,26)). coupled and the uncoupled cases, the scaling factorZ; ithe
. eigenvectorsp, and the mass, damping, and stiffness matrices of
5 Numerical Examples the second-order modélM, £, and IC, respectively are re-

To show the validity of the proposed approach, first a simpléieved using the methodology presented in this work.
but general numerical example is presented. The system, shown i
Fig. 1, has been previously studied by Agbabian efldland Koh id
and Seq30]; the values for the mass and stiffness matrices usg
in this study are given in Table 1.

To consider the effects of the modal coupling on the structure
the eigenvectors, we consider two different damping matrices, @ hoint, it is possible to calculate the diagonal transformation

shown in Table 2. The first one leads to the more classical case @lyjy 7-sing the information at the co-located sensor—actuator
modal damping. The second matrix instead induces coupling Ohir, leading to: diagl)=(2.966+j2.322, 8.996 |8.164
6.449+ j4.789), where diagl’) refers to the components on the-
main diagonal of the transformation matrid (with all off-
diagonal terms equal to zerdAs expected, they appear in com-

81 Uncoupled Second-Order Modes. For this case, the
ntified system matrices for the discrete time state space model
presented in Table 3. Once these matrices have been obtained,
they are converted to their continuous time counterparts, and the
8huations are written in the modal coordinates, as in EBBjsAt

Table 1 Mass and stiffness matrices used for the system of

Fig. 1 M Stiff plex conjugate pairs.
ass ttfness Once these scaling factors have been evaluated, the eigenvector
08 00 00| 40 -1.0 -10 matrix ¢ can be identified, as discussed in Section 3. The eigen-
vector matrix has the formb=[ yn i r i st ] and for this
00 20 00|-10 40 -10 case the identified complex eigenvectars, ¥, andys; are
00 00 12| -1.0 -1.0 40 —0.159-j 0.159 0.109+j 0.109
P =| —0.276-j 0.276|; y,=| —0.135-] 0.135(;
Table 2 Damping matrices leading to uncoupled and coupled —0.185-j 0.185 0.274+j 0.274
second-order vibrational modes for the system of Fig. 1 .
0.334+) 0.334
uncoupled coupled Y= —0.031-j 0.031,
04 -01 01| 05 -01 -02 ~0.114-) 0.114
As discussed in Section 2, for a proportionally damped system,
01 04 -01)-01 07 -03 the particular scaling choice employed in the proposed methodol-
01 01 0402 03 06 ogy !ead; to complex eigenvectors whose components have real
and imaginary parts of equal magnitude. Once these eigenvectors
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Table 4 Identified discrete time matrices of the state-space
model for the coupled damping case

P x 10

9.9461 0.3794 -0.5714 0.1773 0.0032 0.0157
-0.3310  9.8771 -0.5938 -0.6294 0.1211  0.0084

0.5782 04676 9.8825 -0.2419 -0.3919 -0.0220

-0.2784 0.8119 03483 9.8572 0.0833 -0.0785 Fig. 2 Truss structure with eight unrestrained degrees-of-
freedom (one horizontal and one vertical for each of the nodes
0.1925 -0.1088 05346 0.0501 9.5282 0.9199 denoted by 1, 2, 3, and 4 )

0.0117 -0.0764 -0.0880 0.1883 -0.9465 9.9287

Cx10 04 -01 -01

£=|-01 04 -01
1.3362 0.0325 1.5306 0.2360 0.2277 -0.0230 ~01 -01 0.4

1.5236 -1.2545 02148 -0.8687 0.0960 -0.0348

I x10 which are exactly the system matrices we used to obtain the dy-
05234 00030 06595 03176 -2.8212  0.0959 namic data. These matrices automatically come out as real, i.e.,
' the imaginary components are of the order of ¥0and therefore
are numerical zeros for all purposes.

-0.5469  1.2525 1.0654 -1.3654 0.2666 0.6835

5.2 Coupled Second-Order Modes. The procedure for
) _ _ ~ coupled systems are exactly the same as for uncoupled systems,
have been obtained, the mass, stiffness, and damping matrices@alg now the matrices we obtain at each step will look different

be evaluated using the expressions presented ir{1By. than the ones obtained in the uncoupled case. In this case, the
08 0 0 40 —-10 -10 identified discrete time system matrices are presented in Table 4
' ' ’ ' while the diagonal entries of the matriX are diag ) =(0.256
M= 0 20 O0f;: K=|-10 40 -10|; +j4.218, 0.479j16.492, 9.986-j0.754). The complex eigen-
0 0 12 -1.0 -1.0 4.0

Table 8 Mass, damping, and stiffness matrices for the truss
system of Fig. 2. Only the unrestrained degrees-of-freedom are
included in these matrices, and the order of the degrees-of-
freedom are chosen as u,, vy, Uy Vy, U3z, V3, Uy, V4.

Table 5 Mean values of the identified samples for the mass,
damping, and stiffness coefficients. The estimates for the coef-
ficients are obtained at 5% RMS noise level.

Mass
Mass Damping Stiffness
100 0 0 0 0 0 0 0
0.797 0.000 0.000 | 0.501 -0.099 -0.201 | 3.984 -0.998 -0.995 0 100 0. 0 0 0 0 0
0.000 2.002 0.000 | -0.099 0.702 -0.301 | -0.998 4.003 -1.004 0 o} 100 0 0 0 0 0
0.000 0.000 1203 |-0201 -0.301 0.600 | -0.995 -1.004 4.006 0 0 0 100 0 0 0 0
0 0 0 0 100 0 0 0
0 0 0 0 0 100 0 0
Table 6 Absolute values of the percentage errors in the mean 0 0 0 0 0 0 100 0
values of the identified samples for the mass, damping, and 0 o 0 o 0 0 0 100
stiffness coefficients. The estimates for the coefficients are ob- -
tained at 5% RMS noise level. The “-” entries in the tables cor- Damping
respond to coefficients for which the true values are 0. 136.4 0.0 0.0 0.0 500 0.0 177 177
I . 0.0 86.4 0.0 -50.0 0.0 0.0 -17.7 -17.7
Mass Damping Stiffness
0.0 0.0 136.4 0.0 177 17.7 -50.0 0.0
0.36 - -| 015 103 048|039 0.8 0.50 0.0 -50.0 0.0 86.4 177 -17.7 0.0 0.0
- 0.08 -11.03 029 029018 0.06 036 -50.0 0.0 -17.7 17.7 136.4 0.0 0.0 0.0
— - 030[048 029 004|050 036 0.5 00 00T T 00 64 00 00
-17.7 177 -50.0 0.0 0.0 0.0 136.4 0.0
. o ) n -17.7 -17.7 0.0 0.0 0.0 -50.0 0.0 86.4
Table 7 Coefficients of variation (%) of the identified samples * -
for the mass, damping, and stiffness coefficients. The esti- Stiffness
mates for the coefficients are identified at 5% RMS noise level, 27071.1 0.0 0.0 0.0 -10000.0 00 -35355  -35355
anq the “-” entries in the tables correspond to coefficients for 00 170711 00 -10000.0 00 00 35355  -3535.5
which the true values are 0.
0.0 00 270711 00 -35355 35355 -10000.0 0.0
Mass Damping Stiffness 0.0 -10000.0 00 170711 35355  -35355 0.0 0.0
6.11 _ _ 12305 897 529|567 626 457 -10000.0 00 -35355 35355 270711 0.0 0.0 0.0
0.0 00 35355  -3535.5 00 170711 0.0 -10000.0
- 0.65 —1 897 296 390|626 063 492
35355 -3535.5 -10000.0 0.0 0.0 00 270711 0.0
- - 329| 529 390 1436|457 492 254 35355 35355 0.0 00 00  -10000.0 00 170711
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Table 9 Properly scaled complex mode shapes

(amplified by a factor of 100

for presentation ) for the truss system of Fig. 2 identified with five sensors and
four actuators via the proposed approach. Note that all the eigenvectors
appear in complex conjugate pairs.

1/’1/‘/’?

¢27¢;

1/)37 1/’3

¢47 ¢Z

—0.122 ¥ —0.122;
—1.050 F —1.050y
0.122 £ 0.1229
—1.050 = —1.050;
0.122 £ 0.1229
—1.050 = —1.050;
—0.122 F —0.122)
—~1.050 % —1.0507

—0.243 F —0.2435
0.764 £+ 0.764;
0.243 +0.2437
0.764 + 0.764;

—0.243 F —0.243)

—0.764 F —0.764;
0.243 =+ 0.243;

~0.764 F —0.764)

—0.714 F ~0.714)
—0.227 F —0.2279
—0.714 F —0.7149
0.227 + 0.2279
~0.714 F —0.7149
0.227 + 0.2277
—0.714 F —0.7143
—0.227 F —0.2277

0.621 £ 0.621;
0.197 + 0.197y
—0.621 F —0.621
0.197 +0.197)
0.621 +0.621
—~0.197 + —0.197;
—0.621 F —0.621
—0.197 F —0.197;

T/’s,"l’;

1/’671,[’;

1/)77 1/);

11)87 1/’;

0.191 +0.1915
~0.601 F —0.6017
0.191 £+ 0.1915
0.601 +.0.6017
0.191 £ 0.1917
0.601 + 0.6017
0.191 4 0.1917
—0.601 F —0.6017

0.183 £ 0.183
—0.575 F —0.575
0.183 £ 0.183
0.575 + 0.5757
—0.183 = —0.183)
—~0.575 = —0.575)
—0.183 F—0.183)
0.575 - 0.575

—0.579 F —0.579y
0.067 % 0.0677
0.579 + 0.579;
0.067 + 0.0677
0.579 + 0.579;
0.067 % 0.0677

~0.579 F —0.579;
0.067 % 0.0677

—0.527 F —0.5277
~0.168 F —0.168;
—0.527 F —0.5277
0.168 + 0.168;
0.527 + 0.527)
—0.168 F —0.168;
0.527 & 0.5277
0.168 + 0.168;

vector matrixs still has the same structure as in the previous caswailable at the second and the third masses, and that the response
but now the identified complex eigenvectaps, i,, andds; are  of the structure is due to unit pulses applied at degrees-of-freedom
0166+ 0154 [ 0127+j ooms) L and 2 onk The ouput daia o then polted wib Sassin,
= 0'266+J, 0284 o= _0'161_,J 0.120; (RMS) values are adjusted to be 5% of the unpolluted time histo-
0.207j 0.171 0.251+] 0.296 ries. We consider 200 different noise patterns, and each of the
—0.327-j 0.345 polluted time histories are used to identify a discrete time state-
0.018+] 0.045 space model with ERA. ' _ _
0.139+] 0.0093 Tables 5, 6, and 7 concisely summarize the results of this study.
' ' It can be seen in Table 5 that the mean values of the identified
It is important to see that, since the system is not proportionalamples are very close to the exact values; indeed Table 6 reveals
damped, the relation between the real and imaginary [jdrég that the maximum relative errdin the absolute value sensim
they are equal in magnitude in a proportionally damped system the identified mean values is about 1%. In addition, the coeffi-
not valid anymore. However, this makes no difference on the regénts of variation presented in Table 7 show that the scatters

of the procedure, and the identified physical parameters are  around the mean values for the mass and stiffness estimates are
quite acceptable, especially for the degree-of-freedom with the

Y=

08 0 0 4.0 10 -10 co-located sensor—actuator péiegree-of-freedom)2The coef-
M= 0 20 O0f; K=-10 40 -1.0(; ficients for the damping matrix, however, are generally larger than
0O 0 1.2 ~10 —-1.0 4.0 those of the mass and stiffness matrices. This could partially be
attributed to the high sensitivity of the damping to the phase re-
05 -01 -02 lations between the mode shape components which generically
c=|-01 07 -03 makes the identification of the damping matrix a harder task than
0.2 03 06 the identification of the mass and stiffness matrices. Overall the

results show that the proposed methodology provides extremely

which are identical to the initial second-order matrices. satisfactory results even in the presence of noise perturbations.

5.3 Effects of Noise on Identified Parameters. In order to 5.4 Identification of a Truss Structure. In order to present
discuss, in a statistically meaningful framework, the effects dhe applicability of the proposed methodology to a more complex
noise perturbations on the proposed approach, we perform Mogase, we now consider a two-dimensional truss structure with lim-
Carlo type simulations on the 3-degree-of-freedom system witled number of sensors and actuators. This system, shown in Fig.
nonproportional damping. Here we assume that a long duratidnhas a total number of eight nodes of which four are fully re-
pulse response data in the form of acceleration measurementstiained, and hence the total number of active degrees-of-freedom
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Table 10 Mass, damping, and stiffness matrices for the truss
system of Fig. 2 identified with five sensors and four actuators
via the proposed approach

for the rows corresponding to the degrees-of-freedom with actua-
tors (note that the row corresponding #Q can be identified from
either (24) or (25) due to the co-location Since all degrees-of-

Mase freedom of this structure are instrumented with either a sensor or
an actuator, all the rows of the matrix can be identified, and
100 0 0 0 0 0 0 91 these eigenvectors are presented in Table 9. Analogous to the case
0 100 0 0 0 0 0 0 of the 3-degrees-of-freedom system with proportional damping,
0 0 100 0 0 0 0 0 also in this case the real and imaginary parts of the eigenvectors
o o o 100 0 o 0 o are equal to each other in magnitude since the damping matrix.of
o o o o 10 . 0 . the truss structure was constructed so as to lead to a classical
damping case.
Y 0 0 0 0 100 0 0 Using the identified complex eigenvector matgix the mass,
0 0 0 0 0 0 100 0 damping, and stiffness matrices can once again be constructed via
o 0 0 0 0 0 0 wo!| EQgs.(18), and these are presented in Table 10. All the identified
Damping quantities are exactly equal to those r_eportec_:l in Table 8 and so_the
proposed methodology has once again provided an exact solution.
136.4 0.0 0.0 0.0 -50.0 0.0 -17.7 -17.7
0.0 86.4 00  -500 00 00 -177 1171 6 Conclusions
00 00 1364 00 177 177 500 00 In this study, a new methodology for the identification of
00 -50.0 00 86.4 17.7 177 00 oo | second-order structural parameters from identified state-space rep-
-50.0 00 -177 177 1364 00 00 00| resentations was presented. It was shown that, with the formula-
tion developed herein, it is possible to formulate the inverse prob-
0.0 0.0 17.7 -17.7 0.0 86.4 0.0 -50.0 . . .
lem as a problem of transforming the identified complex
77 - 500 0.0 00 00 1364 00| eigenvectors to a certain basis. The requirements for a successful
-17.7 -17.7 00 00 00  -500 00 864 |  transformation are that there should be a co-located sensor—
Stiffness actuator pair, and that all the degrees-of-freedom should contain
270711 00 o0 00 100000 o0 as3ss 15| €ithera sensomwor an actuator. The numerical results included in
this study emphasize the efficiency and generality of the proposed
0.0 17071.1 0.0 -10000.0 00 00  -35355 -3535.5 approach.
0.0 00 270711 00 -35355 35355 -10000.0 0.0 The main innovation in this study is that, with the proposed
0.0 -10000.0 00 170711 35355  -3535.5 0.0 0.0 methodology, it is possible to utilize mixed types of information,
-10000.0 00 35355 35355  2707L1 00 00 00| thereby enabling one to treat the information from a sensor or an
actuator in an analogous fashion. This conceptual “input—output
00 00 35355 35355 00 170711 00 -100000 )\ aquivalence” helps relaxing the necessity of having either a full
-35355 35355 -10000.0 00 00 00 27071t 00| set of sensors or a full set of actuators, allowing a more general
35355 -3535.5 0.0 00 00 -10000.0 00 170711 sensor—actuator setup than those required in previously discussed

approaches.

is 8 (one horizontal and one vertical per each nodée horizon- Acknowledgments

tal degrees-of-freedom are denotedupyand the vertical degrees-  This research has been sponsored through a research grant by
of-freedom are denoted hy , with the subscript referring to the the National Science Foundatié6MS-9457305, whose support
node numbefi.e.,i=1,2,3,4. The mass, damping, and stifinesshas been greatly appreciated.

matrices for this system are presented in Table 8. Note that these

second-order matrices contain the coefficients for only the UnfBaferences

strained degrees-of-freedom and that these degrees-of-freedom are

f : [1] Agbabian, M. S., Masri, S. F., Miller, R. K., and Caughey, T. K., 1991, “Sys-
ordered such that the displacement vector can be writtef(@gs tem lIdentification Approach to Detection of Structural Changes,” J. Eng.

— T
=[ug(tva(t) ... us(thva(t)] o  Mech,,117(2), pp. 370-390.

The instrument scheme we consider is such that there are five2] Smyth, A. W., Masri, S. F., Caughey, T. K., and Hunter, N. F., 2000, “Surveil-
output sensors and four actuators:, v, v,, vy, andv, are lance of Intricate Mechanical Systems on the Basis of Vibration Signature

. . Analysis,” ASME J. Appl. Mech.67(3), pp. 540-551.

u
'nStr_Umente_d with output sensors, the forégft) andfs(t), are 3] gwins, D. 3., 1984Modal Testing: Theory and PracticResearch Studies
applied horizontally at degrees-of-freedom 2 and 3, whereas the Press, Letchworth UK.

other two, denoted b)fli(t) and fi(t) are applied vertically at [4] Motter;head, J. E., a}’nd Friswell,.M. 1., 1993, “Model Updating in Structural
d f-freed d h th he f b Dynamics: A Survey,” J. Sound Vib1652), pp. 347-375.
egrees-of-freedom 1 and 4, such that the force vector may bg; german, A., 1979, “Mass Matrix Correction Using an Incomplete Set of Mea-

defined asu(t) =[f4(t)f5(t) f5(t)f5(t)]". In this case the initial sured Modes,” AIAA J.,17(10), pp. 1147-1148.

discrete time state-space model is identified from unpolluted en[e] Baruch, M., 1982, “Optimal Correction of Mass and Stiffness Matrices Using
P P 9 Measured Modes,” AIAA J.20(11), pp. 1623-1626.

eral 'anIt/OUtpu_t data us_,lng the OKlD/_ERA approach. . [7] Baruch, M., 1997, “Modal Data are Insufficient for Identification of Both
The co-location requirement for this case can be written as = Mass and Stiffness Matrices,” AIAA J35(11), pp. 1797—1798.

CE(2,2)¢=(¢TBE(Z ’2))T, or equivalently [8] Beck, J. L., and Katafygiotis, L. S., 1998, “Updating Models and Their Un-
P certainties. I: Bayesian Statistical Framework,” J. Eng. Med24(4), pp.

CE(2,)¢=(¢ 'BE(:,2)T T2 23 455-461.

c(2)e=(¢ "Bc(,2) (23) [9] Ibrahim, S. R., and Mikulcik, E. C., 1997, “A Method for the Direct Identifi-
Once the transformation matrix is evaluated from Ezp), the cation of Vibration Parameters From the Free Response,” Shock Vib. Bdll.,
rows of the eigenvector matrig can be identified either from part 4, pp. 183-198.

[10] Ibrahim, S. R., 1977, “Random Decrement Technique for Modal Identification

i y—cEfi - -1 P of Structures,” J. Spacecr. Rockefis}(11), pp. 696—700.
Wi,1)=Celi, )T for i=1,2,4,6,7 (24) [11] Vold, H., Kundrat, J., Rocklin, G. T., and Russell, R., 1982, “A Multiple-Input

for the rows corresponding to the degrees-of-freedom with output Modal Estimation Algorithm for Mini Computers,” SAE Trans9l(1), pp.

815-821.
sensors, or from [12] Juang, J. N., and Pappa, R. S., 1985, “An Eigensystem Realization Algorithm
Lo C1pE/. T . for Modal Parameter Identification and Model Reduction,” J. Guid. Control
Y(i,))=(Te "Bg(:,i))" for i=2,35,8 (25) Dyn., 8(5), pp. 620~ 627.

624 / Vol. 69, SEPTEMBER 2002 Transactions of the ASME



[13] Juang, J. N., Cooper, J. E., and Wright, J. R., 1988, “An Eigensystem Real22] Zhang, Q., and Lallement, G., 1987, “Comparison of Normal Eigenmodes
ization Algorithm Using Data CorrelationdERA/DC) for Modal Parameter Calculation Methods Based on Identified Complex Eigenmodes,” J. Spacecr.
Identification,” Cont. Theor. Adv. Technol4(1), pp. 5-14. Rockets,24, pp. 69-73.

[14] Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W., 1993, “Identifica{23] Yang, C. D., and Yeh, F. B., 1990, “Identification, Reduction, and Refinement
tion of Observer/Kalman Filter Markov Parameters: Theory and Experiments,” of Model Parameters by the Eigensystem Realization Algorithm,” J. Guid.
J. Guid. Control Dyn.16(2), pp. 320—329. Control Dyn.,13(6), pp. 1051-1059.

[15] Lus, H., Betti, R., and Longman, R. W., 1999, “Identification of Linear Struc- [24] Alvin, K. F., Peterson, L. D., and Park, K. C., 1995, “Method for Determining
tural Systems Using Earthquake-Induced Vibration Data,” Earthquake Eng.  Minimum—Order Mass and Stiffness Matrices From Modal Test Data,” AIAA
Struct. Dyn.,28, pp. 1449—1467. J.,33(1), pp. 128-135.

[16] Lus, H., Betti, R., and Longman, R. W., 2002, “Obtaining Refined First-Order [25] Tseng, D.-H., Longman, R. W., and Juang, J. N., 1994, “Identification of
Predictive Models of Linear Structural Systems,”Earthquake Eng. Struct. Gyroscopic and Nongyroscopic Second Order Mechanical Systems Including
Dyn., 31, pp. 1413-1440. Repeated Problems,” Adv. Astronaut. S@7, pp. 145-165.

[17] Sestieri, A., and lbrahim, S. R., 1994, “Analysis of Errors and Approximations[26] Tseng, D.-H., Longman, R. W., and Juang, J. N., 1994, “Identification of the
in the Use of Modal Coordinates,” J. Sound Vii77(2), pp. 145-157. Structure of the Damping Matrix in Second Order Mechanical Systems,” Adv.

[18] Imregun, M., and Ewins, D. J., 1993, “Realization of Complex Modeshapes,” Astronaut. Sci.87, pp. 166—190.

Proceedings of the 11th International Modal Analysis ConfereBoeiety for [27] Chen, S. Y., Ju, M. S., and Tsuei, Y. G., 1996, “Extraction of Normal Modes
Experimental Mechanics, Bethel, CT, pp. 1303—-1309. for Highly Coupled Incomplete Systems With General Damping,” Mech. Syst.

[19] Ibrahim, S. R., 1983, “Computation of Normal Modes From Identified Com- Signal Process10(1), pp. 93—106.
plex Modes,” AIAA J., 21(3), pp. 446—451. [28] Balmes, E., 1997, “New Results on the Identification of Normal Modes From

[20] Alvin, K. F., 1993, “Second-Order Structural Identification Via State Space Experimental Complex Modes,” Mech. Syst. Signal ProcekK2), pp. 229—
Based System Realizations,” Ph.D. Thesis, University of Colorado, Boulder, 243.

Co. [29] Lus, H. 2001, “Control Theory Based System Identification,” Ph.D. Thesis,

[21] Alvin, K. F., and Park, K. C., 1994, “Second-Order Structural Identification Columbia University, New York.

Procedure Via State-Space-Based System Identification,” AIABZ2), pp. [30] Koh, C. G., and See, L. M., 1993, “Identification and Uncertainty Estimation
397-406. of Structural Parameters,” J. Eng. Mect20(6), pp. 1219-1236.

Journal of Applied Mechanics SEPTEMBER 2002, Vol. 69 / 625



Analysis of a Three-Dimensional
| Crack Terminating at an Interface
aasmnnson | USING @ Hypersingular Integral
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N. A. Noda Using a body force method and the finite-part integral concepts, a set of hypersingular

Department of Mechanical Engineering, integral equations for a vertical crack terminating at an interface in a three-dimensional
Kyushu Institute of Technology, infinite bimaterial subjected to arbitrary loads are derived. The stress singularity orders
Kitakyushu 804-8550, Japan and singular stress fields around the crack front terminating at the interface are obtained

by the main-part analytical method of hypersingular integral equations. Then, a numeri-
cal method for the solution of the hypersingular integral equations in case of a rectan-
gular crack is proposed, in which the crack displacement discontinuities are approxi-
mated by the product of basic density functions and polynomials. Numerical solutions for
the stress intensity factors of some examples are giV@O!I: 10.1115/1.1488938

1 Introduction X1-Xz—plane. Suppose that the right half-spécgplane is occu-
by an elastic medium with elastic constants (v,) and the

, : i
In recent decades, the use of new materials has been mcreagé alf-space — x,-pland is occupied by an elastic medium with

in a wide range of engineering fields and the accurate evaluati . X -
of interface strength in dissimilar materials has become very irﬁ%ﬁ'gl ignfﬁz)?tsgfﬁg%)igge g?scg d'sogsj[ﬂémbeod d;ofgriénrﬁeﬂ%r:je
3' . .

portant. Considerable research has been done to evaluate the sifgess . - . )
intensity factors and crack-opening displacement for cracks in di r%ez,sgéeailsplacements at a poiktin the materials can be ex

similar materials([1—4]). However, most of these works are o

two-dimensional cases. Due to the mathematical difficulties, there

are not any analytical methods for three-dimensional crack prob- Ug(X)= kai(x,g)ﬁi(g)ds(g) i,k=1,2,3 2)

lems. However, several numerical methods are availdble§]). S

Lee and Keef3] evaluated the stress intensity factors of a crack - . . ) ) L

meeting the interface by a body force method, but they didn’t givénereti=u; —u; is theith displacement discontinuity of the

the singular stress field, and consider the singularity near the cr&¢Rck surface, and

front at the interface in their numerical method. Noda ef @J.

studied mixed-mode stress intensity factors of an inclined semi- Tui(x, 6= a5+

elliptical surface crack by a body force method, in which the ' 1-2v; 9§ '

unknown body force densities were approximated by the products 9G(%E  IG(X.E)

of fundamental density functions and polynomials. This numerical w| KRS TPk }

method was applied by Wang and Nof)] to investigate the d&3 29 £5-0

stress intensity factors of a three-dimensional rectangular crack

using the body force method. j=123 (2)
In the present paper, the hypersingular integral equation method

based on the body force method is applied to solve the problem!BfVhich Gi;(x,) is the Green's functiorf3,11]), which repre-

a three-dimensional vertical crack terminating at an interface, a| gnts the|>_<i-ddirectic_)n (_jisEIacem_ent at poig(tproﬁuced by a u(?_it
the stress singularities and singular stress field around the criid @pplied at poingin thex; -direction. Then, the corresponding
front terminating at the interface are obtained by the main-p?‘gss field can be obtained by use of the constitutive relations.

2011 PG00 |

analytical method of singular integral equations. Based on thea€ Siresses at a poikfoutside of crack surfacg are written as
theoretical solutions, the numerical approach suggested by NS8&°Ws:
and Kobayashi9] will be used to obtain highly reliable numerical

results of stress intensity factors. o ()= Jsskij(xf)ﬁk(f)ds(@ (3)
2 General Solutions and the Hypersingular Integral
Equation for a Planar Crack Meeting the Bimaterial Where
Interface 2p1vy ITp(X, &)
Afixed rectangular Cartesian systes(i =1,2,3) is used. Con- Sij (X, €)= 1-2v, ox U i

sider two dissimilar half-spaces bonded together along the

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 20, 2001; [=1,2,3. 4)
final revision, November 5, 2001. Associate Editor: J. R. Barber. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depart-The traction boundary conditions of the crack surface are
ment of Mechanics and Environmental Engineering, University of California—Santa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after +
final publication in the paper itself in the ASMBURNAL OF APPLIED MECHANICS. o5(X)=—pi(x) XeS. (5)

« VTik(X,f) N ITj(x,8)
(9)(]' IXi
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Here the superscript refers to the upper surface of the crack, 4 x (5 )
and p;(x) represents the loading on the crack surface due to in- 3153
ternal pressure or external loading, and it can obtained from the Hys V2
solution for the loading of the uncracked solid. Using boundary

condition(5) and the finite-part integral concepts, the hypersingu-

lar integral equations for unknown displacement discontinuities

HiVy

can be obtained:

M1 jL
m(kyt+1) S

+Ka,8(xl§)}’u5(§)ds(§):pa(x) a,B=1,2 XeS

3(3— k)
ar3

3 6a5+

Klfl r r
2r1 la'1lp

(6)

M1 - _
Tt 1) jts Us(§ds(§)=—ps(x) xeS
)

where# is the symbol of the finite-part integral, is the distance
from pointx(x4,X,,0) to pointé&(&;,&,,0), r, is the distance from
pointX(Xy,X,,0) to a symmetric pointd, , — &,,0) of point&, and
2Ak1(k,+6)+2B—5C 24AX,&,

4r3

1
—=+Ko(X,§)
r

Kii(x,8) = rg

_ 3(4Ak1—C)(Xp+ &)? N 30AXpE5(Xp+ &£7)?

ars ry
3(2Ak,+Ax3+B—2C) o
; 2r,r3 ®
3C(Xo+ &) 30AXE (Xt &)
Klz(X,§):(X1_§1)[ 4r° 7
2 2
3A(k;—1)X 1
G A L B0
ry 2
| 4 L 9
LA ®)

Koi(X, &) =(X,— &7)
[3(4A+4AK1—C)(X2+ &) 3A(ki— 1),
X 5 + 5
ar3 rs

30AX Xo+ 1
B 2%(7 2 tE) LN
2

X (10)

1 . 1
rsrs  rarg
A+B—C 3(C—4A)(X,+&,)?
37—t 5 +
2r; 4r3

30AXpéx(X,— &1)?
Y S
ra

24AX5€5
5
2

Koo, 8) =

(11)
2C—3A(k?—2k,+3)
2r3

. BA[ 126, (3= k1) (k1= 1) (Xa+ £2)?]
2r3

Ko(x, &)=

3(2Ak;+Ak3+B—2C)
2r,r3

(12)
and

Journal of Applied Mechanics

)
L4

x,(£,)

0 &)
x (&)

Fig. 1 Problem configuration

F=V(x = &)+ (Xa— €)% 1= (X1— &)+ (Xo+ &)2,
r3=ro+x,+§&,,

Ma=(Ea= XM, A= (1= p2) (1t kips),
B=(rops— kipa)l (ot kopms).
S=(p1—p2) (p1t+p2), C=S(k1+1),
Kk1=3—4v,, Ky=3—4v,.

Equation(7) is the same as that given by Lee and KE&r

3 Stress Singularity Near the Crack Front at the In-
terface
According to the elastic theofy12], the displacement disconti-

nuities of the crack surface near a podjgtat the interface can be
assumed as

U(H=Dy(&)EF 0<Re\)<1l k=123  (13)

whereD (&) is a nonzero constant related to podgt and\, is

the stress singular index near the crack front meeting the interface.
Consider a small semicircle doma# on the crack surface in-
cluding point&, as shown in Fig. 1. Let=¢&,/x,, n=§&;/x,,
X1=XyCtgp, and x,—0, and using the main-part analytical
method([12,13)), the following relations can be derived:

U, [
{: ﬁdfldfzle(fo)Xgl 1% thadt
s, 1t 0

8 Lo[( n—ctge)?+(1-t)2]%2

=27\ D1(&)X,! " cothym)

(14)

(X1_§1)2~

2 _
5 Uldfldfzz_g”TMDl(go)Xgl * cot(\ )
1

f

S,

€

(15)

2dg dé,=2m\,Dy(& )x*fl; (16)
gy L oE TIREERSUIT2 sin(h,m)

Ao—1

Xoéo 2
fs :gzuzdfldfzz577)\2(1—)\§)D2(§0)x2

S|n()\277)
17
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(XoF&2)° 4 Ap—1 3 6 12 6xi 6x3 3
J st g et s J. e e eete
(18) _
27mAD3(&)r* "t cog N+ 60—\ 0) 32)
Xo&€p(X =— -
J' 262( % &% T,dé,dé, Sinh
S Iz 2
3 153\
8 . Ap—1 19 S(X2_§2)X3 P U dé1dé,
= — —_— 1 1
4577)\2( A ) 2(§O)X S|r()\2’77) ( ) €
Ex(Xot £5)? 2m\1- MDA $2-))0
Xo&x(X =— . sing cog2—
f er#uldfldgz sin(A )
s, 2 (33)
2 1 A—1
= — (1= MDY (&)X '———  (20) (Xa+ £2)X3U; 2mADy(&o)r . B
45 S|r()\l7T) s, r2 dgldfz —3 SII’()\’]T) S|n()\’77+0 )\6)
f u dédé,= 2 N3D3(&)X (22) (34
=3 L
I rory e ST S'n()‘37") XoX3Uo 27AD,(&)r* tcosh
i ; . s—d&dé=— - o~ [sin(A7—\6)
Using the above relations, from Ed$§) and(7), the stress singu- Js, 2 3 sin(A)sin” 0
lar index can be obtained. It can be shown thgs\;=X\, and .
+AsinfcogAm+O—N0)] (35)

4AN?+2 coghm)—A—B=0 (22)

XoX3U,
cog\ m)=S. (23) 7
s, T2

The characteristic Eq22) is coincident with that for the two-
dimensional cas€1,4]), and(23) is coincident with that for the
antiplane cas€2]). The stress intensity factors at the crack front
on the interface are defined by

27mNDy(&)r* 1 cosh
3 sin\)sir? 0

dédé,=— [3sSiNN(m—\B)

+3Nsinfcog\m+ O—N\0)
+X(1—\)sir 0 sin()mr+20— A0)] (36)

i - +£,)% 2mADo(&)r
K= lim oss(r,6)p_o(20) 1 (24) X3(X2F £2) Uy 2($0 -
! r—0 s |o=0 s, r; d§,dé,= 15 sinA ) [3 sinAw+ 6
K= 1lim o5(r, 0))5-o(2r)* (25) —NO)+(1—\)sindcog\m+26
r—0
—\0 37
Ki11= lim o141, 0)jp—o(2r)* 1. (26) ] 57)
r—0 90 2104 _
) ) X282(Xa+ €2)X3 7T Updé1dé,
4 Singular Stress Field Near the Crack Front at the Se 2 2
Interface _4mN(1-N?)Dy(&)r*tcosdsin(\m+20—\6)
Based on relatio13), the singular stress field around the crack = sin(\r)
front terminating at the interface can be obtained by the main-part
analytical method. For a poimt near the crack front in the mate- (38)
rial 1, using following relations: J 1 3 3 2x§ 3x§ 3x3 ded
J— + - —_
[ ( 1 6% 15X“)u I NN 2 C\3 T T g i, et
3T 5 3Ugs
s\fi e org sin(\ )  2mAD,(&)r Tcoghmt 6\ 6) o
Xsin@sin2—\)0  (27) - sin\ (39)
Uy 2aD4(&)r* tsin\(7— 6) herer , is the distance from poirg(x,,X,,X3) to point&(¢;,£,,0)
f — dédé,= - - (28) andr,, is the distance from poinp(x;,X,,X3) to the symmetric
s, 12 sin(\7r)sin 6

(X2+§2) U3 _2mDg(&rM
f §1d§2=m[3m?\(7f*9)
—\sinfcoghm+60—-N6)] (29)
12x2 15¢%  15(Xp+ &5)2X3
f ( =~ 7 3)v3dfld§2zo (30)
s\ T2 Iz Iz
18X,&,  1806EX5  210kyE,X5
f 522 7 & 9 2 Usdé,déE,
s\ T2 Iz ra
_4mN(1-\?*)Dg(&)r* * cosd cog A+ 26—\ 6)
- sin(\ )
(31)
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pOint (51175210) of pOint §(§11§210)1 €g., n;
= V(X1— 1)+ (Xo— £) 2+ X5, 1= (X1— &)+ (X + &) 7+ X5,
rz3=r,+x,+&,, from (3), the singular stress can be expressed by

AwD3(&)
‘733( )_(1+p;<ll)sm(iw(; - )\f331(0)

#ihwDy(&)
(1+ kq)SIN(N77)r

=x 3 ) wi2<|f|<m
(40)

1 1 ) .

f331(0)=5{2cos{lf)\)0+2(17)\)sm05|n(27)\)0

+[A(L—2\)(2+\)+BJcog A+ 6—X\6) +A(L—\)
X(1—=2N)cogA7m+36—N0)} (42)
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1
il 0)= —{=2(1-N)sinfcog2—\) 0+ [2Ax,~3A+B

+2A5(1+N)+2A(1—\)(2+N)]sin A7+ 6—\ )
+2A(1—N\)(2+ y+N)sinA7+30—\0)} (42)

and here w=[2—A—-B—-2\(A-B)], y=(3—- Kl)/Z(Kl 1).
The superscript 1 refers to the material 1 marked in Fig. 1.

For a pointp near the crack front in the material 2, using thef231(0) =

following relations:

13| 2m\Dg(go)r*
J’Sg<§—F)U;jvdfldfz:Sin(—)\w)COQl—)\)e
(43)
1 3 3 2x3 3% 3x§~d §
J— _+ [
S82)(3 22, TS R g, e &g

_2mNDy(&)r " tsin(1-1) 6

sin\m (44)
3 6x2 123 6x: 6xs  3xs
f [—2—3—32—2—: G+ 13+ 5 g|Usdéydé
s,LMila Tily Tilg Tifg Talg Tilfy
2m\D r*lcog1—\)6
_ 3(§o)_ g ) 45)
SIN\ 7
f[s 3 185 1835 1235 15«3 15¢§ 12}
-t ettt ——
S PIE s CPU e & A OS 5
6x3 | 7A(1—N)Da(£)r*
+m:|l]3d§1d§2—_ Sin)\’ﬂ' [COS(l—)\)ﬂ
+c0g3-1\)6] (46)
(Xo—= &2)X3U; 27D,y ()Mt
fSSTdfldgg— Wsm(l N6
(47)
(X2_§2)Xg~
J’r—7uzd§1d§z
S, 1
TAD (&)t )
+(1=\)sin(3—\) 6] (48)
3 3 2 3x3 3x3 dend
_+_
e A R B A Rt
2mAD r*Lsin(l—\)6
_ 2(&) n( ) (49)

sin\

wherer,,=r,—X,+ §&,, the singular stresses can be expressed by

N D1(&)
ol4(p)=— (le;/:)zsirl]()\llf?rlﬁl005{1—?\1)9
—m2< <72 (50)
wD3(&)
o%dP)= (1+ Kl)SIn()\'ﬂ)rl x F531(6)

#ihwD,(&)

(7 xS 5.40) —ml2<f<m/2

(51)
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milwD3(&)

o-%s(p)_ (1+ kq)sin(Aa)ri- >\f 21(0)
NwD,(&)
<1+lf<ll>;miw§r1—xfészw> ~ 2= f=mlz
(52)

{[r k1+B)—(1—A)(k;—1)—N(1—2A+B)]sin(1

—\)6—(1—\)(1—B)sin(3—\) 6} (53)

1
f2.060)=— —2(1-\)(1-B)sin#sin(2—\) 0+ cog1-)\)0

(54)
f2.(0)=— %2(1—A)(B—1)sin0sir‘(2—)\)0+cos{1—)\)0
(55)
£33 0)= %[(A725+ 1+2AN—BA—\)sin(1—\)@
—(1-B)(1—-\)sin(3—\)6]. (56)

Here the superscript 2 refers to the material 2 marked in Fig. 1.
Other singular stresses near poggtcan also be obtained by use
of the above method. Using definitioi24)—(26), relation (13)

and solutions(50)—(52), the stress intensity factors at the crack
front on the interface can be written as

K — 2" M uhwD3( &) im 217 M\ w0l (57)
1+ ky)sin(A ) ngO(Kl—&-l)sin)\wg)z‘
K :Zlfhﬂl)\tz(fo) im 217\ w0, (58)
W (1+ ky)sin(A ) §2H0(K1+1)S|n)\w§2
K 2' MpgpuahiDy(&) 21 Mg oy
"t p)SINOGT) (g ) ST ERE
(59)

Using relations(56)—(59), the singular stresses solutio40),
(50)—(52) are expressed:

1 K 1 Ki 1
033:Wf331(0) 2 )1 Sotox fasd 0)  wl2<|b|<m

(60)

2 ___Ku 1-\)0 —ml2<6<ml2 (61

013= mcos{ 1) m2< o< (61)
Z:sz (e)+Lf22(o) —m2< 6<ml2
023 (2r)17" 231! (2”1—,\ 23 T =T

(62)

—m2<0<7/2.
(63)

In the case of homogeneity, solutiof®0)—(63) are the same as
that given by Tang and Qifi3].

2 Ki 2 Ki 2
Usazw f331(0)+ 2nt~ 354 0)

5 Numerical Procedure

Consider a rectangular crack meeting the interface in a three-
dimensional infinite elastic solid under a normal load as shown in
Fig. 2. Using its known behavior near the crack front and the
fundamental solutions, the crack-opening displacement can be
written as
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T x, (&)
Hys V, H 'V
7"‘
%a
g >
S %a X3 (52)
—n—>

X (&1)

Fig. 2 A rectangular crack meeting the interface

Us(&1,6)=F3(é1,E)E(a%— £1)(2b—&,). (64)

To numerically solve the unknown functidhy, the unknown
function F;(&,,¢,) is assumed as

N
F3<§1,§2>:n§1 a3nGnl£1,62) (65)

whereag, is unknown constantsl=(K+1)(L+1), and
Gi(é1.62)=1, Gu(é1,6)=¢1, .-,
GK+1(§11§2):§§: Gy +2(81,62)= &2,
Gk+3(€1,82)= €182, - - - szz(fnfz):fffz, s

G+ (é1.E)=ErE5. (66)

Substituting(64) and (65) into (7), a set of algebraic linear
equations for unknowig, can be obtained:

N

(1 +1)
3 aanl13400 xa) + 1300 )=~ % P3(X1,%2)
(67)
where
1
I%n(xl‘xz):j{: §w2(§11§2)d§1d§2 (68)
S

130(X1 %) = LKo<x,§>w2(§1,§2>d§1dfz (69)

in which

w2(§1,§2)=§)2‘\/(a2—51)(2b—§2)Gn(§l,§2). (70)

where Dyy(X1,X5,61), and Doy(Xq,X,,r1,60,) are known func-
tions, and can be derived by the Taylor expansion method. Now
the integrals in(73) are generals, and can be calculated numeri-
cally. Using the above method, E(6) can also be numerically
solved.

6 Numerical Results

In order to verify the above method and illustrate its applica-
tion, numerical results for a rectangular crack are presented in this
section. Consider a rectangular crack meeting the interface in a
three-dimensional infinite elastic solid under a uniform tension
load o35 in infinity as shown in Fig. 2. The dimensionless stress
intensity factor of the crack front for mode | is defined as

Fi=K ozt ™. (74)

The collocation point number is taken asX2P0 for the present
results. Before the results for the general cases are presented, two
special cases of a square crack in homogenous materials and sur-
face cracks are compared to other results. In the case of homoge-
neous materials, the numerical results of the stress intensity factor
for a square crack are given in Table 1, and compared with those
given by Wang and Nod&l0]. It is shown that the results are
convergent, and the polynomial exponeltsL=9 are enough
for a satisfied result precision in this case, and these polynomial
exponents will be taken for the following results.

A surface crack corresponds to the limiting case wjemu,
=0, and the values of the stress intensity factors at the crack front
point (0, 2b, 0) are given in Table 2. It is shown that present
results agree with those by Noda and W4d§] and Isida and
Yoshida[16].

Numerical results for two typical examples are given below.
Figure 3 gives the maximum dimensionless stress intensity factors
at the center of the crack front on the interface varied with the
ratio of w,/uq for different ratios ofa/b. Obviously, the varia-
tions of the stress intensity factors for the cracks with different
ratios ofa/b are similar, and more gently wheuw,/©«,=20. So
the material 2 can be treated as a rigid medium wjemw,
=20. The dimensionless stress intensity factors along the crack
front at the interface are shown in Fig. 4 for different ratioats
(m2/p1=0.5) and compared with the two-dimensional case. It is
shown that the stress intensity factor at the center of the crack
front for the case oé/b=8 is close to that of the two-dimensional
case. This indicates that the stress intensity factor at the center of
the crack front for the case @/b=8 can be calculated as the
two-dimensional case.

7 Conclusion

A set of hypersingular integral equations of a flat crack termi-
nating at a bimaterial interface in a three-dimensional infinite
solid subjected to arbitrary loads is derived. The behaviors of the
crack displacement discontinuities near the crack front meeting at
the interface are analyzed by the main-part analytical method of

Integral(69) is general one, and can be numerically calculateflypersingular singular integral equations, and the singular orders
Integral (68) is hypersingular one, and must be treated befo®e given. Then, t_he singular stress fields around the crack front
being numerically evaluated. Using the finite-part integral methd@rminating at the interface are obtained. Although the expressions

([14]) and the following relations
E1=x1tr1€0860; &=Xp,+rysing; (71)
wa(&1,62) = wa(X1,X2) + Dox(Xq,X2,01)1 1
+ Dol X1 a1, 61)17, (72)
the hypersingular integrdb8) can be written as

2 (X ,X )
I%H(XLXZ):L [‘%"‘Dzﬂxlrxzﬁl)'n R(6,)

R(6,)
+f D22(X1,X2,r1,01)dr1 deo (73)
0
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of the displacements and stresses in the materials are complex in
modality, the analytical solutions of singular stresses around the
crack front are brief.

A numerical method for hypersingular integral equations of a
rectangular crack terminating at the bimaterial interface is pro-
posed, and the crack displacement discontinuities are approxi-
mated by products of a series of power polynomials and funda-
mental solutions, which exactly express the singularities of
stresses near the crack front. This technique should be improved
for other shape cracks in the future.

Highly reliable numerical results of stress intensity factors of
mode | along the crack front are obtained. The numerical results
show that this numerical technique for a rectangular crack is suc-
cessful, and the solution precision is satisfied. From the numerical
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Table 1 Convergence of stress intensity factor

Fi (X,=0, alb=1, po/p,=1, v=v,=0.3, K=L)

Xi/a 0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

K=6 0.7522 0.7505 0.7468 0.7383 0.7260 0.7072 0.6821 0.6506 0.6085 0.5521 0.4446
K=7 0.7539 0.7534 0.7487 0.7391 0.7243 0.7046 0.6803 0.6508 0.6122 0.5528 0.4396
K=8 0.7512 0.7508 0.7474 0.7396 0.7260 0.7061 0.6803 0.6489 0.6102 0.5536 0.4451
K=9 0.7534 0.7512 0.7462 0.7379 0.7255 0.7072 0.6821 0.6497 0.6090 0.5521 0.4464
K=10 0.7534 0.7517 0.7465 0.7376 0.7245 0.7065 0.6827 0.6511 0.6088 0.5499 0.4523
K=11 0.7533 0.7517 0.7466 0.7377 0.7245 0.7064 0.6827 0.6514 0.6087 0.5491 0.4535
Wang 0.7534 0.7517 0.7465 0.7376 0.7245 0.7066 0.6828 0.6512 0.6086 0.5492 0.4536

Table 2 Dimensionless stress intensity factor
=0, »;=0.3 at x;=0, x,=2b

Fy for py/py

alb 1 2 4 8 10

0.810 1.113 1.387 1.530
0.810 1.112 1.386 1.529
0.803 1.069 1.318 1.481 -

Present
Noda
Isida

1.552
1.550

1586

Stress intensity factor F,
5

0.0 T T v T T T T T
40 p /u, 60 80

Fig. 3 Stress intensity factor
on the interface (x,=0)

1
100

F; at the center of the crack front

— 0.6

Stress intensity factor F

0.0 —

T T T T T T
0.4 X, /a 0.6

Fig. 4 Stress intensity factor
interface for u,/pm,=0.5

Journal of Applied Mechanics

1.0

F; along the crack front on the

solutions, it is shown that the stress intensity factors vary more
gently whenu,/®w,=20, and the material 2 can be treated as a
rigid medium in this case. Moreover, the stress intensity factor at
the center of the crack front for the caseadb=8 is close to that

1586 Of the two-dimensional case.
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Plane Thermal Stress Analysis of
an Orthotropic Cylinder Subjected
to an Arbitrary, Transient,
Asymmetric Temperature

«cvee | Distribution

Graduate Research Assistant

Department of Mechanical Engineering, A closed-form, analytical solution is presented for the transient, plane thermal stress
The University of Texas at Austin, analysis of a linearly elastic, homogeneously orthotropic hollow cylinder subjected to an
Austin, TX 78712-1063 arbitrary temperature distribution. The thermoelastic solution, obtained by a stress func-
tion approach, can be used as the basis for the corresponding thermoviscoelastic solution
T. J. Moon for thermorheologically simple viscoelastic materials by invoking the viscoelastic Corre-
Associate Professor, spondence Principle. This solution can also be directly extended to the class of weakly
Department of Mechanical Engineering inhomogeneously orthotropic cylinders using perturbation methods. The transient asym-
and Texas Materials Institute, metric temperature field is characterized by Fourier-Bessel eigenfunction expansions. The
ETC 115160, analytically derived stress function satisfies a linear, fourth-order inhomogeneous partial
The University of Texas at Austin, differential equation and the Cesaro integral conditions, which assure the existence of a
Austin, TX 78712-1063 single-valued displacement field. The corresponding thermal stresses are then computed
Mem. ASME by the stress-stress function relations. A key feature of the analytical solution is that the

hoop, radial, and shear stresses, due to the transient arbitrary temperature distribution,
are expressed explicitly in terms of the scalar temperature field. A polymer composite
example is presented to validate the current method and to qualitatively illustrate the
distribution of thermal stresses due to an asymmetric temperature distribution. Numerical
results are presented for the thermally driven hoop, radial and (interlaminar) shear
stresses in a hollow, hoop-wound glass/epoxy cylinder. This analysis demonstrates that
potentially debilitating interlaminar shear stresses can develop in laminated composites
when subjected to an even modest transient asymmetric temperature distribution. Their
magnitudes depend on the severity of the spatial and temporal thermal gradients in the
circumferential direction. While still relatively low compared to the hoop stress, the shear
stress may cause thermal failure due to the typically low interlaminar shear strengths of
laminated composite materialsDOI: 10.1115/1.1491268

Introduction coelastic behavior can be neglected, while thermoviscoelasticity

i . . . applies to solids at temperatures close to and above their glass-
Thermal stress analysis is an important issue for laminated e

terials. Laminated composite structures are beina deploved in ansition temperature. For thermorheologically simple viscoelas-
: P g deploy {iE materials, the thermoviscoelastic solution can be obtained di-

creasingly severe thermal environments, as well as being s?@étly from the corresponding thermoelastic solution by invoking

jected to complex spatial and temporal thermal gradients duri viscoelastic Correspondence Princifite.2]): as a result, the
moelastic solution is relevant to a wide variety of elastic and

their manufacture. This issue is especially critical for Iaminatetﬂer
coelastic materials.

materials possessing relatively low interlaminar shear strengths,
thermally induced shear stresses can initiate intra and |nterlam|na{n thermoelastic problems, there are two major types of thermal
stress analyses. The first type applies to linearly elastic, homoge-

failure by delamination.
Generally, there are two kinds of thermal stress analyses dBous domains such that an analytic solution can be derived using

laminated materials: thermoelastic and thermoviscoelastic. Thﬁrblisplacement or stress formulation. Padof@irstudied the ef-
moelastic treatments assume that the material is elastic under t@g&- .

e thermal stresses in an orthotropic cylinder subject to a steady-

perature and thermal stresses that are generally history depen Ote asymmetric temperature distribution. IwESd provided an

Thermoelgsticity usua!ly applies to solids at temperatur(.asl W%! alytical solution for the transient thermal stresses in fully and
below their glass-transition temperatures so that the material’s Vb%irtly cooled circular rings. Experimental results using a photo-

Coributed by the Abplied Mechanics Division offE AMERICAN SOGIETY OF elasticity technique were presented to compare with theoretical
ontributed by the Applied Mechanics Division o ; ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- solutions. GOOd. agreement was found between the m.'lmencal re-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, AugusSUlts and experimental data. Kardomatfag] used a displace-

24, 2001; final revision, February 28, 2002. Associate Editor: H. Gao. Discussion Baent formulation to derive the transient, axisymmetric thermal
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depastresses in orthotropic hollow cylinders; Hankel asymptotic ex-
ment of Mechanical and Environmental Engineering University of California—San nsions of the Bessel functions of the first and second kind with
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after . .
final publication of the paper itself in the ASMBURNAL OF AppLIED MEcHan- Sl and large arguments were employed to obtain the solution
ICS. for extremely short and long times. Sugdi®} presented an ana-
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lytical solution for an asymmetric plane thermal stress problem @uctivities, ando andc are its mass density and specific heat. All
an isotropic, inhomogeneous circular ring using the Airy streggoperties are assumed to be independent of temperature, time,
function method. The Young's modulus and thermal conductivitgnd position. The energy sour¢ar sink term, S(r, 6,t), may be
were assumed to be power-law functions of the radial coordinathje, for example, to a volumetric exotherniimr endothermit
while the coefficient of thermal expansion was assumed to be elmemical reaction or electromagnetic energy deposition. Without
arbitrary function of temperature. His numerical results showedss of generalityT(r,8,t) can be interpreted as the temperature
that the temperature and thermal stresses were greatly affectecchgnge relative to some reference temperature, say the “stress-
the degree of the material’s nonlinearities. Zibdeh and Al Farrdree” temperatureT,;. The Robin-type boundary conditions and
[9] presented a three-dimensional steady-state stress analysifitial condition considered here are
homogeneous hollow composite cylinders subjected to an asym-
metric temperature distribution. In their analysis, a general dis-
placement formulation was used in each ply with continuity con-
ditions being imposed at each layer interface. Their results
showed that the cylinder’s stress response was sensitive to com-
posite thickness, fiber orientation, and ply stacking sequence. r=b, Lo +L»pl=0 3)
The second type thermoelastic stress analysis applies to inho-
mogeneous domains such that an analytical solution is intractable t=0, T(r,0,00=F(r,0) )
and therefore an approximate solution is sought. Hata and Atsumi
[10] employed a perturbation method to study the axisymmetrighereL;; ,i,j=1,2, are the thermal boundary condition coeffi-
transient thermal stresses in a transversely anisotropic hollow cgients and=(r, 6) is the initial temperature distribution.
inder with temperature-dependent coefficient of thermal expan-Using an eigenfunction expansion, the general solutiolpf
sion and modulii. The applicability of their technique is quitecan be written
general, except the solution procedure is mathematically

oT
r=a, LllEJrleT:O; (2)

tedious—in addition to being approximate. Tauchéf] used the - 2y

Rayleigh-Ritz method to analyze the plane stress/strain, axisym- T(r,e,t):z aoiRo(poif )€~ +oi

metric thermal stresses in an inhomogeneous, anisotropic cylinder. =t

The assumed displacement field was expanded by a polynomial * *

series that satisfied the imposed kinematic boundary conditions. +2 (E aniR,. (mnir)cogneo)

The coefficients of polynomial series were then determined by n=1\i=1 "

requiring the total potential energy be a minimum subject to pre- "

scribed boundary conditions using Lagrangian multipliers. . —tulit
Taucherf 12] further extended the Ritz method to solving a simi- + ; b”iRKn(“"ir)s'n(na)) e ®)

lar problem in an inhomogeneous, anisotropic, finite elastic cylin-
der. Both of Tauchert’s analyses assume that the temperature aietre the orthogonal eigenfunctioRg (wnr) are defined by
displacement fields can be approximated by power-series repre-

sentations. Using the stress function formulation, Kala®] de- J. (pnil)

rived an approximate solution for the asymmetric thermoelastic RKn(,unir): - .

analysis of an orthotropic cylinder. The cylinder’s stiffness and Laapnid e (i) +Load (snib)
coefficient of thermal expansion were assumed to depend on tem- v

perature in an arbitrary fashion. A complementary energy varia- _ Kn(“ﬂir) ©6)
tional principle was used in the study to determine the coefficients LowstniY e, (niD) +L2oY  (nib)

of the approximate solution. To demonstrate the accuracy of the
method, a finite element solution, as well as an exact solutiophose normN(u,if, ;) is given by
were presented to compare with the numerical results. Hyer and
Cooper[14] employed a complementary virtual work principle to b 2
evaluate the thermal stresses in orthotropic composite tubes. A N(“"ir"‘"):f R (air)dr. )
stress formulation was used in the study with the edge effect being @
ignored. Huang and Tauch¢i5] used an incremental analysisThe corresponding eigenvalugs; satisfy the characteristic equa-
with large deformations to investigate the thermal stresses induggshs
in nonlinear angle-ply composite laminates under a nonuniform
temperature distribution. The displacement fields were expressed Kn
by series approximations that were determined by the principleTo'f—ll[ #niJanl(Mnia) - ;an(ﬂnia)
minimum potential energy.

The aim of the present work is to use a stress function approach Kn
to extend the work of Kalam and Tauchg#f to present an ana- * ( '-21[ HniY =1 (#nib) = UYKn(Mnib)
lytical solution for a class of plane thermal stress boundary value
problems having thermal boundary conditions and initial condi- Kn
tions being expressed by Fourier series representations. - ( I-11[ i Y e, 1(mnid) = EYKn(#nia)

L), (Knid)

+L22YKn(Mnib))

LY, (mnid)

Transient, Plane Temperature Distribution

The transient, plane temperature distributid(r,6,t) in an
elastic, homogeneously orthotropic hollow cylindemer radius

K
* ( LZl[ MniJanl(/-Lnib) - FnJKn(/Jvnib)] + L22J;<n(:unib)

a, outer radiush) is governed by the following energy equation: =0(n=012... i=123... ) ®)
2T 14T 2T aT where k,=nK,7K; depends upon the thermal orthotropy ratio
r(? += E) + K"W =ec— +5(r, 6,t) (1) and{=K;/pc is the thermal diffusivity in the radial direction.

Here,J, and Y,, are (cylindrical) Bessel functions of the first

where, respectively, and ¢ are radial and circumferential coordi-and second kind, respectively, of ordey.
nates measured relative to the cylinder’s central ad&jsandK, All unknownsag; , a,;, andb,; in (5) are determined by the
are the cylinder’s radial and circumferenti@oop thermal con- initial condition
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F(r,e>=i§1 aOiRo<u0ir>+n21 21 aniR, (fnir)cogno)

+2 meanmmsirme)) ©
{=
which, by Fourier series expansion, leads to

* 1 27

izl 3—0iRo(M0iF)—zfO F(r,0)do (10)

* 1 2T
EamRanmr):—ZWf F(r,0)cogn6)de  (11)
i=1 0

” 2m
> meKn(umr)=2if F(r,0)sinne)ds.  (12)
i=1 m™ Jo

Using Fourier-Bessel eigenfunction expansidits conjunction
with (6) and (7)), ag;, an;, andb,,; can be written as

b

aoFm JarRO(MOir)

1 2w
EL F(r,B)da]dr 13)

1 27
Efo F(r,6)cogne)do;dr
(14)

1 b
a,=— | IR r
ni NS J; Kn(/-‘vm)

1 b
bni: N([LLnirlKn) Ja rRKn(Mnir) 2

2
j F(r,e)sir*(ne)da]dr.
0
(15)
Stress Formulation

Plane Stress Formulation. In a linearly elastic, homoge-

Jery Perg JE gy 2‘92800 Pep deyr
+ - P — tr——=
256 TG00 o U a T T O
(22)
and the Cesaro integral conditio(j46])
am derg  JEgp)
+ —_— — —
fo ent+2 20 " ar rsingdg=0 (23)
2m dery de yp
. s”+2(9—0—r o r cosfdf=0 (24)
2m (98r9 (9896'
. g —&Egpt %—I’ o de=0. (25)

For simplicity, it is convenient to define the nondimensional ra-

tios:
[Ey =
k=\/=— m=\/—,
E, Gro Ay

Substituting (16)—(18) into (19—(21) and further substituting
those results into the compatibility EQ2) yields the compatibil-
ity equation in terms of the stress functidn(r, 0,t):

AL 22 1 0 N k? 9*® . 2 93P
ra T (m o) 2 20 T TR et T o

ay
@ .

M (26)

2 o2 1 PP K PD
T 2K) (3 57 T 2
1 2P k% od

+(2k2(1—v,9)+m2)r—4ﬁ+ r_3(7_r

#PT 2-M,dT M, &#T
or? ar

:_Eﬁaﬁ( 12 962" (27)

+ —
ar? r

neously orthotropic solid, the associated stress-strain relations Rifnilarly, the Cesaro integral conditions expressed in terms of the

a plane stress solid subjected to a temperature chibrgé,t) are

1 Vig
8rr:E_"'rrfE_r0’90+a’rTv (16)

r r

l Vrg
899:E_90'90_E_r0rr+a9T1 (17)

r

1

(18)

Erp—™ 7"~ O
re 2Gr(~) re

where, respectivelys,,, €4y, €9 @and oy, o4y, 0,4 are the
plane cylinderical strain and stress componeBtsandE, are the
radial and circumferential elastic moduliG,, is the in-plane,

elastic shear modulusy, and «, are the radial and circumferen-

tial coefficients of thermal expansion; ang, is the major Pois-
son’s ratio.

In transient, plane elasticity problems, the stress components

can be related to a single stress functib(r, 6,t) by

1 acb+ 1 5D 1
T Y ar T e (19)
PD
0'99:7[- (20)
1(10d )
o=~ 2\ v 78 (21)

stress functionb(r, 6,t) are

Fﬁ( PP . (1= v, )k? 9@ . (1—2v, K2+ m? 32D
0
3

r—
ars r ar r2 96°
mZ_Vr0k2 07 (I)

r arae®

+ )rsinedﬁ

2m aT\
=—Eya, MaT—rE rsinodé (28)

0

(B D  (1— v k? 0D . (1—2v, )k?+m? 5°®
0 ar’3 r ar re 96?
m2— v, k2> P g
+ f W r cosédé
2m aT
=—Eyay M, T-r bl cosfdé (29)
0

Pd  Pd k2 od  2(1-nu)kP+m? 5P

ar3 ar? roor 2r2 962

JZW(
0
m2—2vr,,k2 PR
- >|d6
2r arae

de. (30)

=—E 27TM nT al
—0a00(a)fy

In multiply connected regions, such as hollow cylinders, the nec-
essary and sufficient conditions for a single-valued displacementStress Function Solution. For notational convenience, the

field are: the compatibility equation
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transient temperature field can be expressed in the form
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©

T(r,0,t)="fq(r, t)+2 fa(r,t) cosn0+2 gn(r,t)sinné. +2 E H“r“mJ 37 Mig(p,t)dp |cosnd
n=2 =
(31)
The time-independent, homogeneous solutlgir, 6) of (27) is E 2 Hnrxn,f 3Mi9S(p,t)dp |sinng  (40)
Dp(r,0)=Ag+Bor2+ Cort K+ Dgrt k+ | A+ Byr2+Cort=  where
1
+DyrA0e+Hrosing+[Arr +Byrinr +Cyri 4 mnh= 41
0 ! [ ! ! ! ! ()\nZ_)\nl)()\n3_)\nl)()\n4_)\nl) ( )
+Dyrt*Plcosf+H r 6 coso+[Ajr+Birinr 1
£ 4 H2= (42)
A1 Mn2) N pz—An2) AN pa— N p2)
+Cir A4 Dr  Alsing+ D, || D) Anir™i | cosnd mTneliine Tnaiing fnz
n=2 | \i=1 1
3= 43
4 3 ()\nl_)\n3)(7\n2_)\n3)()\n4_)\ns) ( )
> Byrini|sinne (32) 1
i=1
I;=—— — — (44)
WhereAOl BO! CO! DO! A(,)’ B(’)v C(,)x D(,)a H]_, Hi, Al: Bly Cly ()\nl )\n4)()\n2 )\n4)()\n3 )\n4)
D., A}, By, C;, D}, A, andB,; are arbitrary coefficients and for n=0,2,3... (n#1) and
— _ 2 2 Pty 2—M, of
Vi+(A-20 K4 m @3) ﬁg(ﬂ,t)=*Ee“0(—fﬁr S
1
Npp=1+ \/1—5[Il<n>+|2<n)] (34) 5 Py 2-M, ity DM, |
n(pt)=—Eyay — or2 -t r &_r_ (2 'n (46)
1
Npp=1+ \/1——[|1(n)—lz(n)] (35) g, 2—M, dg, n?M
2 s n a %Yn a
Fn(p,t)= E/,a,,( a2 T ar 12 gn) (47)
1 - . .
An3=1— \/1_ =[1(n)+1,(n)] (36) wheren=1,2,... . By theprinciple of linear superposition, the
2 general solution of27) is then
1 D(r,0,t) =D, (r,0)+D(r,6,t). 48
ne= 1 /1 200~ ()] (37 nr O+, )
Stress Field. Substituting the stress functigqd8) into (19—
where (21), the corresponding stress components can be determined.
They must, however, simultaneously satisfy the Cesaro integral
— 2 2 22
l1(n)=1—-(1-2n%yk"—n"m (38)  conditions that assure a single-valued displacement in a multiply
1o(n) = [ 1+ n2m2+ ((1—2nZv, kD) P— [ 2k(n>— 1) ]2 connected domain; they require
(39) Bo=0, (49)
Moreover, the fact that whem=0, A o;=0,1,1-Kk,1+k, and when 52
n=1,\;=1,1,1+ 3,1- B (i=1,2,3,4) has been incorporated. Hi=— =By, (50)
Next, substituting32) into (27) and using the orthogonal prop- 2(1-wpk
erty of cosnd and simé@ over the interval(0,2m), the time- 22
dependent particular solutioh ,(r, 6,t) of (27) is found to be -7 g
p H, 2(1—Vr9)k281' (51)
r
D (r,0,t)=, H?rMiJ p3 raigs(p,t)dp It should be noted that i1t32), the term @,+Bgr2+Cort=9
i=1 a +D{ri*4 6 corresponds to a pure shear deformation that cannot
r r exist in a thermoelastic problem and thus is excluded from the
r rinr
+ —f p2|nrﬁ§(p,t)dp——f p?9S(p,t)ydp  stress field.
BJa B Ja After integration by parts, the thermal stresses can be written as
ri-# (M,—K)Eya, ([
- 2*“’1‘? S(p.t)dp o =|C +“—f p fo(p,t)dp |rk?
ﬁ? rr 3 2k . 0
I’l+ﬁ (M "f‘k)Egag r
+ p? Po5(p,t)dp +|C +Q—J p*fo(p,t)dp [r~ (1)
2ﬁ3 a 1 4 2k A 0
r(r B;+2H
X cosfl Ef p?Inrd5(p,t)dp + %—ﬁclr’(‘”lMBDlr(ﬁ’l)
a
rinr (M,+1—B)Ega,? 1 (1
-— 219 (p,t)dp— f p**P93(p.t)dp +— p Pfi(p,t)dp
B Jao Tt 2/3 2B a1
rith M.+ 1+ B)Ega,r  F*D
+ 2,33f 2-B95(p,t)dp|sin e ¢ Bz)ﬁ" g fpﬁfl(p,t)dp cosé
a
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N Bi+2H]

; _Bcirf(ﬁJrl)J'_BDir(ﬂ*l)

N (M +1-B)Egayrf?

r
f p Pg1(p,H)dp

2B a
(Mo +14+B)Ega,r BT .
a
o 4
+ 4 ‘ 1 ()\ni_nz)r)\nr2 Ani+HinE6a9(()\ni_Ma_l)
n= =

r
X(2=Np)+Nn°M a)f p*Mif(p,t)dp

a

] cosné

©

4
‘E (Npi—n?)rtni—2
i=1

+
n

=2

><(2—>\m)+n2|v|ﬂ)fr

a

pt Mgy (p,t)dp

Cak+ p “fo(p,t)dp|rk?

(M,=K)Egpay (T
2

a

p(k+1)

p*fo(p,t)dp

M, +Kk)E r
[C4k+( @ )Waj

2

a

—Epayfot+

M, +1— 1)E B=1 (r
+( ot 1=B)(B+1)Ea,r fp_ﬁfl(p’t)dp

28
(M +14B)(B—1)Ega,r ™0
+ 28

a

r
j pPti(p.tydp

a

!

B
—Ega,f,|coso+ Tl +B(B—1)Cyr~ B+

+B(B+1)DyrF7Y
(Mo +1-B)(B+1)Eag P (B~ 1)
+ 28
(M +1+ B)E a,r ~ BT
_ 2

©

sin 0+2
n=2

a

r
f pP91(p,H)dp

a

—Epay0:

4
[ 2 Nni(Api— 1)r)\ni2[Ani
i=1

HITE (M=M= 1)(2=\p)

r
+n2Ma)f pr it (p,t)dp —Ega(,fn] cosné
a

4

+ E | 2 )\nio\ni_ l)r}\"'iz
n=2

=1

r

—1)(2=\p) +n°M a)f p Mgy (p,t)dp

a

- Ef,aggn’ sinn@
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Bnit I'Egay((Ani=M

Bni+HinE9an9((7\ni7 M,—1)

]sinna (52)

B
+ HBB=1)Cyr BT+ B(B+1)Dyr Y

r
J p~Pgi(p,t)dp

a

(53)

B
0= %,Bclr—<ﬂ+1)+ﬁDlr(ﬁ—1)

N (M +1=B)Egayrft

}
f p~Pi(p,tydp

2p a

Mo+ 1+ B)Ega,r B (r

. 32) = fpﬁfl(p,t)dp sing
B a

B1 1y (BH1) rp(B-1)
- T—ﬁClr +BDyr

(Mo +1-B)Ea, P H(B=1) [T _

a

(M +1+B)Ega,r B (r

- 239 - pPga(p.t)dp [coso
a

4

+2 ’Z N\ 1)rin =2
n=2

2 Ani+TIMEgay((Nyi—M,—1)
=

r
x(2—)\ni)+n2Ma)f prMnif (p,t)dp ]sinn@
a

© 4
+ |E N(Api— 102 B+ TIE parg((Npy— M, — 1)
n=2 i=1

r
><(2—)\m)+n2Ma)j pl gy (p,t)dp ]cosne. (54)
a

Boundary Conditions. In a pure thermoelastic problem, the
stress-free boundary conditions at the inner and outer surfaces are

(55)
(56)

Plane-Strain Formulation. The plane-strain solution is ob-
tained directly from the plane stress solution by replacing the
plane-stress complianceS,;, S,,, S;» by the corresponding
plane-strain compliances;,, S;,, S;, where

r=a,

r=>b,

o =074=0;

o =07,=0.

, SisSjis .
s”:s”—?;, i,j=12 (57)
1 1 VI'G
Sll:E_u SzzzE_B, Spp=—— (58)
r

1 1 1
S13=S;5= [ Sp3= Sy5= [ S33= S35= £, (59)

The subscript 3 denotes the axia) (direction. Likewise, the co-
efficients of thermal expansion are related through

a)=a,+vya,, (60)
ap=aytvya,. (61)
Also,
S; [ 1 al v o(l+v
k'= #v m'= 7 M:x:_l;’ VI"(9: ra(r ZG)'
S GroSp Qg SiE
(62)

Polymer Composite Example and Discussion

To illustrate the use of the analysis, an orthotropic cylinder
(Fig. D having an insulated inner boundary, a convective outer
boundary and two halves initially at two different, uniform tem-
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BC's:

ar
7r=0 @r=a

ar
S +hT=0@r=b
A\ o
X

IC:
T=T,;0<0<7
T=T,;n<0<27

Fig. 1 Example orthotropic cylinder with imposed boundary
conditions and initial condition

using oy =0y [EpayT, 0gp=0glEgayT, 0r4=0,4/EgayT,
whereT=(T,+T,)/2 is the axisymmetric part of the initial tem-
perature.

In the example problem, the initial condition can be expressed
asF(r,0)=T+(T,—Ty)/2, 0<6<m, F(r,0)=T—(T,—T,)/2,
< @0=<2m so that the principle of linear superposition can be
applied to add the axisymmetric thermal stresses caused by an
initial axisymmetric temperature field§ to the asymmetric ther-
mal stresses caused by an initial asymmetric temperature distribu-
tion ((T,—T,)/2, 0<6O<m;, —(T,—T,)/2, 7<6<2m). In the fol-
lowing plots, T,;=100°C andT,=80°C; the dimensionless time,
r={t/a?, is chosen to be=0, 7=0.36 andr=0.72, correspond-
ing tot=0, t=1800, and=3600 seconds, respectively. Compu-
tationally, the asymmetric part of the initial condition is expanded
by a Fourier Sine series: Z(—T,)Z_; 35_sinné/n. To obtain
sufficiently convergent results, the number of eigenvalues in the

peratures is considered. The cylinder is not otherwise beingmperature distribution is taken to be 10 andn=11. All inte-
heated, so thag(r,0,t)=0. The assumed cylinder dimensionggral terms in(52)—(54) are evaluated numerically by a Gaussian

and thermal boundary condition coefficents aaez0.05 m, b
:01 m, Lll: 1, L12:O, L21: 1, L22: 10 The |n|t|al temperature
distribution is: F(r,0)=T;, 0<6<w;, F(r,0)=T,, 7<0<2m.
The material properties are taken to He,=44 GPa, E,
ay=5 ymptotically converges to that &==/2 due to the initial tem-

=11 GPa, (=5x10"'"m?s, a,=60x10 ®°C,

quadrature rule using 30 Gauss integration points.

The transient, surface temperature histories at three circumfer-
ential directions(#=—=/2,0;7/2) are illustrated in Fig. 2. A
increases, the temperatureéat — /2 increases gradually and as-

x10°8/°C, K,=1W/m°C, K,=9W/m°C, which are typical perature gradient. In the current example, the temperature history
values for a 60% fiber-volume-fraction hoop-wound E-glasst an arbitrary position is bounded by a horn-shape evolution.
epoxy composite. The thermal stresses are nondimensionalizeéigure 3 demonstrates the transient, radial temperature variation

Dimensionless Temperature
e o 9 I -
C (=21 @«© — [\ Eay

" T l T

I
o
T

—o— r=bat 90 degree —s— r=aat 90 degree
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D
—

o
=]
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o

0.4 0.6 0.8

Dimensionless Time

Fig. 2 Surface temperature history for  =—m/2,0,7/2
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—o— 1=0, 0=n/2
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Fig. 3 Transient temperature distribution in the radial direction for
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—o— r=3, t=0
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Fig. 4 Transient, surface temperature distribution in the circumferential direction

at 0= —m/2,7w/2. As expected, the numerical results reveal that Figure 7 depicts the transient hoop stress in the radial direction
the initial temperature difference between the two diametricalfpr 6= — 7/2,77/2. The maximum compressive hoop strgss
opposite positions diminishes asncreases. =a, 6=m/2) decreases to two-thirds its initial value by
Figure 4 depicts the transient, circumferential temperature0.36; in the same period, the maximum tensile hoop stfiess
variation atr=a,b. At =0, the temperature distribution at the=b, 6= — 7/2) drops to less than half its original value. Often, a
cylinder’s inner and outer surfaces coincide due to the initial uncomposite cylinder’s tensile strength is significantly higher than
form distribution of temperature; the circumferential oscillationts compressive strength due to defe¢tsg., residual stresses,
are the result of using a finite number of terms in the Fourienicrocracks, fiber wavenesgenerated during the manufacturing
series to represent the abrupt, step change in temperatufe agirocess. As a result, when considering the failure of a composite
=,2m. As T increases, the temperature gradient in the circunsylinder under thermal loading, both the magnitude and sign are
ferential direction decays as the cylinder approaches an axisyimportant.
metric, thermal steady state. Figure 8 shows the transient radial stress along the radial direc-
Figure 5 shows the surface hoop stress history in three circutien at = — #/2,77/2. The compressive radial stress suggests that
ferential directions. Since the maximum hoop stress occurs at iiterlaminar delaminations and/or microcracks in the fiber direc-
ther the cylinder’s inner or outer surface, the hoop stress for atign will not open further under this particular thermal loading.
intermediate radial position again falls into a horn-shape evolu-Figure 9 displays the transient shear stress in the radial direc-
tion. As the spatial and temporal temperature gradients decay, tlem at 6=0,7. Due to the symmetric temperature distribution
hoop stresses converge asymptotically to a steady-state valuewith respect to ther-axis, the shear stress is necessarily zero at
Figure 6 illustrates the transient hoop-stress variatiorr at 0= — /2,7w/2. As the resulting shear stress is antisymmetric, the
=a,b in the circumferential direction. As expected, the numericahear stress for any intermediate radial position is bounded by the
results show that at=0 the maximum tensile hoop stress occurenvelope spanning frori=0,7. Clearly, the shear stress eventu-
atr=h, 6=/2 and the maximum compressive hoop stress oally diminishes asr increases, which can be seen from the tem-
curs atr =a, 6= w/4. Meanwhile, it is informative to note that theperature distribution discussed earlier in Fig. 4. In the present
hoop stress is tensile and compressive at the outer and inner gwoblem, the maximum shear stress is only about 3% of the maxi-
faces, respectively. mum hoop stress; however, thermal stresses may initiate failure by

—o— r=a at 90 degree

—t— r=aat-90 degree

—= r=a at 0 degree

—~a— r=b at 90 degree

Dimensionless Hoop Stress

—— r=bat-90 degree

—=— r=bat 0 degree

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dimensionless Time

Fig. 5 Surface hoop-stress history for ~ 8=—/2,0,7/2
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Fig. 6 Transient, surface hoop-stress distribution in the circumferential direction
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Fig. 7 Transient, hoop-stress distribution in the radial direction for 0=—m/2,7/2
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Fig. 8 Transient, radial-stress distribution in the radial direction for 0=—m/2,7/2
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K. J. Kim A constitutive theory is presented for a transversely isotropic, viscoplastic (Bingham)

fluid. The theory accounts for threshold (yield) and viscous flow characteristics through

J. L. White inclusion of a potential function serving the dual role of a threshold function and a

Director viscous flow potential. The arguments and form of the potential function derive from the

theory of tensorial invariants. The model reduces to a transversely isotropic model of

Institute of Polymer Engineering, perfect plasticity in the limit of vgnis_hing vis_cosity. In the limit of isotrop_y, it_ reduces to
University of Akron, the Hohenemser-Prager generalization of Bingham's model. A characterization procedure
Akron, OH 44325 is prescribed based on correlation with experiments conducted under simple states of

stress. Application is made to polymer melts filled with talc particles.
[DOI: 10.1115/1.1483831

1 Introduction In this paper, we propose a constitutive theory of a transversely

isotropic viscoplastic fluid based on a potential function that plays

. Coqcentrated suspensions of small part_lc_les In various ma_tn(i 2 dual role of a threshold function and a viscous flow potential.
|nclud|n_g polymer melts are kn_own to exhibit a threshold or y|_eI ‘he potential implies a form of path-independence and limits the
Str?lSZ’ 1., a ?trggs b(;low \a’h'Ch no ﬂ.OW o::curs. TT:Sh behaworr resentation to fluids whose viscosity is independent of defor-
\Iive 1oc\L;_men ed In's elarz ogv expenmelzjs\,Nﬁ._g., aé')rgan 4Ation history(e.g., excluding thixotropy We develop the trans-
ee[1], Vinogradov et al[2], Suetsugu an ite8], and Os- ersely isotropic constitutive theory and examine some limiting

anaiye et al[4]. Evidence of such behavior also exists in uniaxi ases. Application is made to PS polvmer melts filled with 20%V
elongational flow, cf., Toki and Whitgs], Montes and Whit¢6], and 46%F\)/pof talc particles. poly 0

Suetsugu and Whitg8], and Kim and Whitg 7].

There is a long history of effort to develop constitutive equa-
tions for particle filled suspensions. A simple shear model of & Constitutive Model
fluid that is rigid below a threshold stress and exhibits linear vis-
cous flow above was proposed by Binghg#h Multiaxial exten-
sions of Bingham’s model were made over the following tw
decades by Hohenemser and Prg@rand Oldroyd[10]. Prager ET0)
[11] in his monograph examines and generalizes this earlier work s 1)
and makes application to some simple classical flows. More re-
cently, White[12] and White and Lobg¢13] developed a multi- in which V=the rate of deformationg=the Cauchy stress, and
axial plastic/viscoelastic model. In each of the multiaxial model@ =a viscous dissipation potential function. Equati¢h) ex-
cited, the features of plasticity are based on the von Misgs ( presses normality of the rate of deformativhto surfaces of
yield criterion of isotropic perfectly plastic solids. Q(o)=const. in a combined rate of deformation /stress space, cf.,

The investigations addressed above are directed to suspensidpgendix A. Convexity of the surface€(o)=const. in that
where the effect of the dispersed particles results in viscoplassigace ensures that the representation is dissipative.
behavior that is essentially isotropic. However, fibrous or disk-like For an anisotropic fluid) must depend not only on stress but
(talc, mica, etg. particles used as fillers in some industrial comalso on the local material orientation, cf., Appendix B. In the case
pounds often result in anisotropy. It is observed that such particlektransverse isotropy, the local preferred orientation can be des-
tend to orient during flow or processing, resulting in materidgnated by a unit vectod. As the sense ofl has no special
properties that have a preferential direction and are thus traségnificance, we take the dyadic self productodefining a sym-
versely isotropic. Erickse4] was the first to develop a theory of Metric orientation tensoD=d®d with trD=1. Assuming the
anisotropic fluids. A theory of transversely isotropic plasticfluid response to be independent of hydrostatic stress, we take the
viscoelastic fluids applicable to polymer melts has been developfess dependence on the deviatoric steesshus, the viscous
by White and Sulf15]. Their model makes use of an anisotropidotential()(s,D) depends on two symmetric, second rank tensors.
yield criterion due to Hil[16—18. A recent paper by White et al.  Following Spencef20—23, objectivity of (1) requires that)
[19] considers an alternate model of a transversely isotrop€Pends on an irreducible integrity basis comprised of invariants
plastic-viscoelastic fluid in which the anisotropic yield criterion ofnd joint invariants of its argumentsand D. Included in the
Hill is replaced by one based on the theory of tensorial invarianfdegrity basis is the subset of quadratic invariants:
following Spencef20-23.

Consider a non-Newtonian viscous mateflid) under iso-
6herma| conditions represented by

1
J2: ztl‘sz
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 2 2
CHANICS. Manuscript received by the ASME Applied Mechanics Division, January |0_ (II'DS) (2)

3, 2000; final revision, December 14, 2001. Associate Editor: D. A. Siginer. Discus-

sion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, I :trDSZ

Department of Mechanical and Environmental Engineering, University Q.I;

California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted u lﬂUS: we may take

four months after final publication of the paper itself in the ASMBUBNAL OF 2

APPLIED MECHANICS. Q(JzJo ). (3)
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Instead, we are guided by Lance and Robingdfi and Rob- This completes the representation of a transversely isotropic,
inson and Duffy[25] and make use of a physically based set afion-Newtonian visco-plastic fluid. Its full specification includes

invariants that are combinations ), i.e., (2), (4), and(9)—(12). Application to a particular fluid requires the
1 determination of the material parameters
|1=Jz—|+£—1|?J K,u,n,a, and B. (13)
5 K has units of stresg has the units of viscositstress-timg and
l,=1-1g (4) the remaining parameters are dimensionless.
3 |2 The second Eq11) can be transposed as
where
and we take o
u=pF" (15)
Ql4,15,13). (5)

is a transversely isotropic viscosity. We note tkeft, Appendix

I, in (4) specifies the square of the maximum transverse shefak. {2 =const. surfaces in stress space are surfacés=afonst.,
stress at a materigfluid) element, i.e., the maximum shear stresgnd by (15), u=const. In particular, the threshold surfaee-0
on planes containing the local preferential directiband perpen- corresponds tu=ce.
dicular to it.1, is the square of the maximum longitudinal shear The anisotropy parametetsand 8 and the threshold stress
stress on planes containicgand parallel tad. | ; gives the square in (11) and(12) are material constants relating to a fixed degree of
of the normal stress on a plane perpendiculadd.e., on the anisotropy and stress threshold. This is consistent with steady-

plane of isotropy. state flow where the oriented filler particles have fully aligned
We introduce an intermediate functish that incorporates a Wwith the flow (as the talc particles in the subsequent application
polynomial of the invariant$4), i.e., Under transient conditions where the filler particlébers may
be initially randomly orientated and convect with the flow, the
QD) (6) scalarse, B, andK need to be considered state variables each
) ) having an evolutionary equation coupled with the flow equations,
P=l1tatl+ f5 ™ for example with formsx(o-,D,V), B(o,D,V), andK(eo,D,V),

in which &>0 andg>0 are material constants. We note fr¢fa ~ Cf- Poitou, Chinesta, and Bemig26] and Advani[27]. _
that ® is a quadratic, convex function of stress. Similady,is Definition of the evolutionary equations is left as a topic of
convex in stress, ensuring that the representation is dissipatfyire research.

(cf., Appendix A.

Using (1) and (6) we write 3 Some Limiting Conditions
Q) dQ b The second Eq11) or (14) can be written as
V== — (8)
do d® Jdo K [trr2)y]n
— 1/n+ _
and calculate, front4) and (7) = (2u) @("Vz) } (16)

b lo Equation(16), of course, holds only if the rate of deformation is
a—:I‘:s+(a2—l)(sD+ Ds—2I0D)+(3ﬁ2—l)E(3D—I). nonzero.
7 ) Taking the trace of each side ¢f6) multiplied by itself gives

2n
It is readily shown from(9) thattrI'=0. Then, from(8) we have trr2= (2)¥+ L E v trv2 17)
trV=0 indicating incompressibility. # J@ \trv? :
We need to specify the functiond® in (8) for a particular .
fluid. Following Hohenemser and Pradé] and Pragef11] we For u—0 in (17) there results
adopt a simple power-law form K2n
—=1 or ®=K2 (18)
do  F" K P
dd  2u where F=1— \/Tg (10) Equation(18) serves as a transversely isotropic yield condition
that is satisfied whenever the rate of deformation is not zero.
in whichn=1, x andK are material constants. Under the same limiix— 0, (16) reduces to
As our interest is in a representation of a viscoplastic material T
that is essentially a viscous fluid but can sustain shear stress in a -/ T
state of rest, we state the constitutive theory in the féagain r WZV or V=AL A>0. (19)

guided by Hohenemser and Prag@f and Pragef11]): The yield condition(18) and the flow law(19) are supplemented

0 for F<O by the condition
F'I' for F=0 11 D<K? 20)

corresponding to zero deformation rate. Thus, the viscoplastic
constitutive model expressed (@) —(12) reduces to a transversely
isotropic perfect plasticity modgll8)—(20) in the limit of zero
viscosity u— 0. This anisotropic plasticity model was employed
lo earlier in Robinson and Past[8].

I'=s+(a?—1)(sD+ DS—2|oD)+(3B2—1)§(3D—|) Further, we consider another limiting case, i.e., the isotropic

(12) limit «—1, B— 1A3 with n=1. Under this limit(2), (4), (7), and

(9) give d= 1/2trs*>=J, andT'=s and the viscoplasticity model

where(7), (9), and(10) are repeated for convenience. (9)—(12) becomes

2uV=

K
F=1l-—  ®=1+a%,+p%;

Jo
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2 3
(@) Ts (b)LS
Fig. 1
0 for F<O
2pV= Fs for F=0 (21)
Fo1- (22)
V3,

{c) LN (d)TN

“Natural” stress states

defines the material parameter
Using (11) and takingy,5=2V,3, we obtain the longitudinal
shear(LS) flow

. az
Y13= -
M

Ke

Rl

1

n
) T |7|=K, . (30)

which is recognized as the multiaxial generalization of Bingham’s Now we consider a third simple stress state, i.e., longitudinal

model proposed by Hohenemser and Prd8§¢and Pragef11].

normal (LN) stress as depicted in Fig(c). Here, the single non-

The isotropic limit of the anisotropic perfect plasticity modekero stress component is;;= o. Using (2), (4), (7), and(9) we

(18)—(20) is

J,=K? (23)
replacing the yield conditio(18). The flow law(19) becomes

V=2\s (24)
and(20) is replaced by

J,<K2. (25)

The isotropic perfect plasticity model specified (@3)—(25) is
that first considered by von Mis¢29].

4 Response to Simple Stress States

Natural Stress States. We now calculate the response of the
viscoplastic model9)—(12) under some simple stress states, re-

get ® =202 andT';;=28%0. At the threshold stresE=0 we
have

K
B

whereY, is the threshold under longitudinal norm@N) stress
and

o=*—=xY 31
L

(32)

defines the parametgt
From (11) with £,,=V1; we have elongationdLN) flow

. BZ( Yi
E=—o|1
11 w

|o]

n

(33)

o lo|=Y, .

ferred to as “natural” stress states for the model. These are illus-The fourth natural stress state illustrated in Figd)lis that of
trated in Fig. 1. We choose coordinate directions as shown, wiifansverse normdlTN) stress. Here, the only nonzero stress com-
the preferential direction along thg-axis. Thus, the orientation ponent isog;=o. Again from (2), (4), (7), and(9) we haved

tensorD has component® ;=1 with all others zero.
Transverse shedS) is depicted in Fig. (a). The relevant

stress components ame;= o3,= 7, all others are zero. Calculat-
ing the pertinent invariants usin@) and(4) and substitution into

(7) and (9) yields ® =72 andT",3= 7. At the thresholdF=0, we
have

7==*K.

(26)

Thus, the material paramettr introduced in(10) represents the

threshold stress in transverse shegs).

=[(1+ B?)/4]a? and I'3z=[(1+ B?)/2]o. At the thresholdF
0

o= A1+ BHK==%Y (34)
or
Yi =(1+ B?)/4. (35)
N

Again, from (11) with e33=V33, we get an expression for the

Using (11) and denotingy,s=2V,3, we obtain an expression transverse normdTN) flow

for transverse shedlS) flow:
. 1 (1 K )” =K
=—\|\1—7=| 7 TI=K.
YR T

Next, we consider longitudinal sheérS) as illustrated in Fig.
1(b). Now the relevant stress components at@=o3;= 7, all
others zero. Again, calculating the pertinent invariants usf)g
and (4) and substitution into(7) and (9) yields ®=«?7? and
I'15=a?7. At the thresholdF =0

K

T=i;=iKL

(27)

(28)

whereK, is the threshold stress in longitudinal shear and

K

K (29)

(47

Journal of Applied Mechanics

Yr
o]

Comparing(32) and (35), we observe that with the transverse
shear thresholdk known, determination of eitheY, or Yt pro-
vides the parametgs. Evidently,Y, andY are not independent.
This is because the theory developed here does not include the full
integrity basis of invariants for transverse isotropy. This situation
is analogous to that of the isotropic von Mise,) theory of
perfect plasticity23)—(25), which is similarly based on an incom-
plete basis of invariants. There, with the shear yield sti€ss
known, the uniaxial yieldr is not independent but determined as
Y=v3K.

Combined Normal and Shear Stress. Before specifying a
characterization procedure based on the natural stress states, we
consider the response under combined normal and shear stress as

€33 (36)

_(1+ﬁ2)/4<

n
) o |o|=Yr.
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1 1‘+,/32
==

o+ a? 7. (37)

At the thresholdF=0, using(29) and (35) and normalizing by
K., we write

KE(‘T 2+( 7)2 1 (38)
2 3 Y2 K, K, '
Fig. 2 Combined shear stress  (LS) and normal stress  (TN) The threshold curvésurface (38) is illustrated in thea/K ,

/K space of Fig. 3. Varying degrees of anisotropy are specified
by values ofK, /Y. Evidently, the shape of the threshold sur-
faces directly reflect the degree of anisotropy. The dotted curve
indicated in Fig. 2. In terms of the natural stress states the stresktes to isotropy withk, /Y+=1#3=0.577. That labeled 0.474
state of Fig. 2 is combine_S) and(TN). The preferential direc- relates to a subsequent application to a filled PS/TALC 40V%
tion is again taken along the -coordinate direction; thus, again, melt.
the orientation tensor has componebts=1 with all others zero.  Figure 4 shows the same stress space and includes the threshold

The nonzero stress components afg= 03;= 7 and o33=o0. surface designated a§_/Y1=0.474 in Fig. 3. Also shown is a
Calculating the pertinent invariants usif® and(4) and sub- family of surfaces®=const. (or equivalently, F=const., u

stitution into (7) yields =const). Stress points inside the threshé#ld=0 (=), i.e., in

4«_

t/K,
0.90
,-0.57 7
: 0474

ke

Fig. 3 Threshold curves in normalized o/K,, 71K, space. PS/TALC 40V%-0.474,
Isotropic—0.577.

‘T oP o
® = const. /K ( )

F = const. Y
[l = const,

~4t

Fig. 4 Family of curves ®=const. (F=const.,, u=const. ) for PS/Talc 40V%.
lllustrates normality.
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Fig. 5 Fluid elements showing preferential and flow direc-
tions; (a) disk-like filler particles, (b) elongated fiber filler par-
ticles I

t? T

the shaded region, do not cause viscous flow; stress points outs s
F=0 (u=«) produce flow with viscosity equal to the value of 10° -
u=const. passing through that stress point.

Flow under the combined,r stress is calculated usingl).
Denoting as earliefy;3=2V,3 and £33=V33 and using(37) we

have B 1
S UL 39)
Y= | l-—F=] 7 &=
“ Jo 10* ,
for the shear flow, and 10° i 10*
b
(1+p?)14 K\" )
Eg3=—— | 1— \/_— o $=K (40) Fig. 6 Apparent viscosity (Pa-S) versus stress (Pa) for PS/
r @ TALC 20% (symbols ). Correlation of shear flow (LS)—(solid
for the elongational flow. curve ). Prediction of elongational flow  (TN)—(dashed curve ).
Computing the ratiG 3/ 13,
é33 KL 2 g (9(1)/(70'
Yz Y1 7 a®lor’ (41) fibrous particles oriented with the flow direction. The material

element of Fig. £a) is representative of the talc-filled PS melts
“Wnsidered in the next section.
Shear flow of the element in Fig.(&) is identified as
ngitudinal shearLS) in accordance with the previous section
??ig. 1(b)). The corresponding threshold shear stres,is Ex-
UYtensional flow of the same element is recognized &s) flow
(Fig. 1(d)) with threshold stres¥; . These flow and yield features
Yare directly measurable using shear and elongational rheometry
but do not allow a complete specification of the material param-
L . . eters(13). Additional measurements are necessary for a full speci-
5 Characterizatior/Determination of Material fication, e.g., measurments of transverse shear {68 and/or
Parameters the threshold stred$. However, these are not readily obtained for

We now outline a characterization procedure for representing}@? class_ of fluids of interest. ' _ o _
particular fluid, i.e., a procedure for determining the material pa- A Partial characterization useful in processing applications is
rameters(13). Hypothetically, experiments are conducted unddpund for talc-filled PS melts in the following section. This is
the “natural” stress stategFig. 1); the parameters are determined?@sed on rheometric measurments of Kim and Whie
by correlating calculations based on results of the previous section
and the measured responses. If we assume that the independent
threshold stressd$,K, andY, (or Y1) are measurabley and 8 inati _Fi
are then determined throudR9) and (32) (or (35)). Further, if 6 Ap.pllc.atlon to Tale F”_Ied Polymer Melts o
shear and/or elongational flow data are available from experi-ApPPlication of the model is made to polymer melts containing
ments under any of the natural stress st&¥), (LS), (LN), or disk-like taI.c particlesFig. 5(@@)). We suppose tha.t a fIU|d.eIe- .
(TN), these data can be correlated with the respective predictidR§Nt contains a large number of these particles oriented with their
(27), (30), (33), or (36) to determine least-squares fits of the flovdisk normals at r}ght angles to the flow direction, cf., White and
parameterg. andn. In principle, this completes the specificationSUn[15] and White et al[19]. _ )
of the material parametef43), i.e.,K,x,n,a and 8. As |nd|_cated |n_F|g. fa) we adopt a coo_rdlngte system Wlth_the

In practice, not all experiments relating to the “natural” stres@Xis X, aligned withd, the local preferential direction. As earlier,
states can be performed. Rheological propertjésid and flowy ~the orientation tensor has the only nonzero compoifigjt=1.
are typically measured using rheometers, such as a sandwich rhae flow direction isxz.
ometer for shear properties and a uniaxial elongational rheometef "€ polymer melts of interest are PS/TALC 20 V% and PS/
for elongational properties, cf., Kim and Whif&]. Observe the TALC 40V % at 200°C. Figures 6 and 7 show experimental data
two fluid elements of Figs. (&) and 5b) corresponding to two (symbols taken from_ Kim and Wh!t¢7] and plotted as viscosity _
types and configurations of filler particles under flow. The flo€rsus stress. As discussed earlier, the stress state under which
indicated in Fig. 5 is shear flow relating to a shear rheometer aitgse flow measurements were made is that of longitudinal shear
extensional flow for an elongational rheometer The element {kS) as in Fig. 1b). The measured longitudinal threshold shear
Fig. 5(a) shows disk-like particles having their disk normals oristresse are indicated in Figs. 6 and @nd Table 1 asK
ented at right angles to the flow. Figuréb® shows elongated =~ 245 Pa for 20 V% TALC andK‘L"O%5120 Pa for 8 V % TALC.

we see that it is equal to the ratio of components of the gradi
vector (Fig. 4 computed using37). The gradient vector is di-
rected normal to thé = const. curve passing through a particula[0
stress point. This further illustrates the concept of normality
discussed in Appendix A. Clearly, the nature of the flow is infl
enced by the shapes of thk=const. (F=const., u=const)

curves, which, in turn, are dictated by the degree of anisotrop
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Table 1

10°

K. Y1 u n K /YT
PS/TALC 20 V% 245 489  8.30x10% 2.15 0.501
PS/TALC 40 V% 5120 10800 2.98x10* 1.98 0.474
vt 2 V . .
s In the absence of additional data for a complete characteriza-
tion, nevertheless we can predict the elongatidid) flow re-
10°F sponse. Using36) and (43) we write
R T Etas IR BT
=—= - ol=
ez3  (KL/Y7) o] !

for the apparent elongational viscosity, .
Predictions using44) for PS/TALC 20 V% and PS/TALC 40 V
% are plotted as dashed lines in Figs. 6 and 7. If elongational
viscosity data ¢,v,) for these melts become available, a com-
parison with these predictions would furnish a definitive assess-
ment of the proposed model.
10° | Recall that the predicted threshold curve for PS/TALC 40V%
103 105 under combinedr, 7 stress was shown in the normalized stress
1,0 "~ space ¢/K_,7/K|) of Fig. 3. It is identified there a¥, /Yt
=0.474(cf., Table 1. The comparable threshold for an isotropic
Fig. 7 Apparent viscosity ~(Pa-S) versus stress (Pa) for PS/  fluid is also illustrated in Fig. 3; it is labeled 0.577.
TALC 40% (symbols ). Correlation of shear flow (LS)—(solid The same threshold curve for PS/TALC 40V% is included in
curve ). Prediction of elongational flow  (TN)—(dashed curve ). Fig. 4, labeledF =0 (w=2). The model predicts no viscous flow
for PS/TALC 40V% associated with stress points inside this
threshold curveshaded region stress points outside cause flow

As the flow data relates to longitudinal sheas), it should With finite viscosity, corresponding to the calculatgd- const.
correlate with the flow predictiof30). However, first we rewrite Curve passing through the given stress point. In particular, the

(30) in terms of apparent shear viscosity, i.e., ratio of elongational flow rate 35 to shear flow ratey,5 for PS/
K\ TALC 40V% under the combined stressr is calculated by41)
r
vT=.—=u'( f—L) 171=K, (42) %
Y13 | 7] £33 o
where we have denoted’ = u/a?. With K, known and flow data -7_13%0'225;- (45)

recorded in the form of data pairs,{,), best fits of the param- _ o ) . .
etersy.’ andn can be found. This has been done for PS/TALC 2¢NiS ratio isa/37 for an isotropic fluid.
V% and PS/TALC 40 V % using curve fitting software in Math-
ematica. The results are listed in the following table.

The threshold stressd§; and Y1 have the units Pax’ has 7 Summary and Conclusions
units Pa x S. The solid curves in Figs. 6 and 7 are curve fiss,

. . A constitutive theory is proposed for a transversely isotropic,
plots of (42) with the optimal values ofx” andn from Table 1. y 1S Prop y p

- h = = viscoplastic(Bingham) fluid. The model treats threshold and flow
Although elongational flow datérN) are not available in Kim o5 4cteristics as having essentially the same physical origin, i.e.,
and White[7], measurements of the normal stress thresh_tiﬂd_s the, impedance of molecular reptation by the presence of small
were made using an elongational rheometer. These are indicalgd,ended, oriented filler particles. The theory incorporates a po-
in Figs. 6 and 7(and Table 1 as Yy~489Pa andYr tential function serving the dual role of a threshéyield) func-
~10800 Pa. _ _ _ tion and a viscous flow potential. The arguments of the potential
As discussed in the previous section, data including Yr and  consist of a subset of the integrity basis of invariants for trans-

(LS) flow data providing optimal fits oh and ' = u/a” are not  verse isotropy; the resulting representation is objective and dissi-
sufficient in themselves for a complete characterization of thgative.

model. WithK andYy known, we write from(29) and (35) The anisotropy parametetsand 3 and the threshold stre$s
K 1+ 52 are considered material constants in the proposed model corre-
B ) (43) sponding to a fixed degree of anisotropy and stress threshold. This
Yt 4a* is consistent with steady-state flow as in the present application to

If, in addition, a measurement of the transverse shear threghold@lc-filled polymers where the oriented filler particles have fully
were possibleg would then be known fron29) and 3 from (43). allgn%d with tl:“e ﬂo‘(’j"- '”l transient ﬂC?W v(\j/here the f'“_errl pﬁrtlﬁzles
Finally, with x=u'a? a complete specification of the materiaf@y e initially randomly orientated and convect with the Tlow,

: the scalarsy, B, andK must be considered state variables, each
parameters would be realized. . ! X > X A

with a specified evolutionary equation that is coupled with the
l0bserve that the correlations in Figs. 6 and 7 are good over the limited stnﬂ%w f'?'d equatlpr]s, cf., Poitou, ChmeSta’ and B.errﬁ.m] and

range considered.e., one or two orders of magnitude above the threshold $Ire53&d\_/an| [27]- Definition of the equations of evolution is left as a
Practically, this range of stress is sufficient in most polymer processing calculatiot®pic of future research.
However, we observe frorté2), or more generally froni11l) and(12), that in the The proposed viscoplasticity model reduces to a transversely

limit of large stress, the proposed model predicts Newtonian response. For app”f?@tropic perfect plasticity model in the limit of zero viscosity In
tions that require modeling over a large stress range and the behavior is n .

noo o B .
Newtonian at high stress, the form Bfin (12) may not be appropriate and would the “m't_ of !SOtrOpy_the proposed theory reduces to the multiaxial
need to be replaced by a more suitable form. generalization of Bingham'’s theory by Hohenemser and Prager.
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given stress depends critically on the shape of@®heconst. ¢
=const.) surfaces. In turn, these shapes are strongly dependent on
the nature and degree of anisotropy, cf., Figs. 3 and 4.

We further observe from Fig. 8 that the surfad@s-const.
enclose the origin of the stress space and, provided they are con-
vex, the scalar product

V=0 (A1)

i.e., the viscous dissipation rate is non-negative.

As always, the existence of a potential aginimplies a form
of path independence. Here, this is manifest in the calculation of
complementary viscous dissipation over a generic path in stress
space fromo” to o®, i.e.,

Fig. 8 Convex Q=const. surfaces in ¢, V space. Threshold oB
surface F=0 (u=). lllustrates normality. f Vdo=Q(o®)—Q(a) (A2)
s

A2) shows independence of path betwaghand ¢®. Such path

| tAdS|m|caIe characttanzatlon procedgre |fs ogtllned l;flsed tort] Ca"iﬁ‘\dependence excludes application of the present development to
ated and measured responses under fundamemaalra) states iy otropic fluids, or more generally, to fluids whose viscosity is
of stress. Although experiments under all the natural stress staleYendent on deformation history

are not always att_ainable, the s_tated procedure serves as a fram or incremental changes ior and V, we have from(1), in
work for determining the material parameters. component form
Application of the model is made to PS polymer melts contain-
ing disk-like talc particles of 20 V% and 40V% at 200°C. The 220
data set for each melt consists of measured threshold sti€gses dvj; =
andYt and shear flow measurements corresponding to the natural
stress state of longitudinal she&S). These data do not constituteyith
a complete set for full characterization. Nevertheless, good corre-
lation of the model with th¢LS) data is obtained over one or two Lijir = Lij (A4)
decades of stress above the threstqld The correlation with the
(LS) data and the measurement\tf allows a prediction of trans- relating to Onsager’s Principle for a Newtonian fluid, cf., Drucker
verse elongational flowTN). If (TN) flow data were to become [32], Ziegler[33].
available for these melts, a comparison with the prediction would
provide a definitive assessment of the model.
It is noted that the present model shows Newtonian respon dix B
asymptotically as the stress becomes large relative to the stre endix
threshold. Application to transversely isotropic fluids for which The generalcomponentform of (1) for an anisotropic viscous
the flow is non-Newtonian at high stress can be represented by thaterial(fluid) is
same theoretical framework with different choices of the func-
tional forms, cf., Perzyng30]. Vi =M ﬂ B1
The proposed constitutive theory is limited to isothermal con- K g (B1)
ditions and is not applicable to hereditary fluids whose viscosity is
dependent on deformation histo.g., thixotropic fluids Exten- ~Following Betten[34], who addresses the plastic behavior of an-
sion to nonisothermal conditions can be achieved by appropriaté#ptropic solids, we expreg81) as
including Arrhenius(or WLF) forms and conducting experiments
under the natural stress states at other temperatures. Extension to V. :ﬂ +ém ﬁ (B2)
hereditary fluids is left for future study. U oy UKL 9D,

WdokI:LijkldUkl (A3)

. for a transversely isotropic fluid with a viscous potenfidlo, D).
Appendix A Betten[34] identifies the second term {iB2) as being of second-
Figure 8 shows a superimpos&ix-dimensional stresso- and  order relating to the plastic potential of an anisotropic plastic
rate of deformatiorVV space. The state of stress and rate of defosolid; he derives its specific form using representation theory of
mation at a fluid element are represented as pdorntsectors in  tensor functions. As our objective is to formulate a simple consti-
this space. We see froi), (10), and(15) that the(hypep sur- tutive law, applicable in processing calculations, we ignore the
faces()(o)=const. in stress space are equivalently surfaces sécond term ir{B2), arguing that it is likewise of second order for
® (o) =const.,F (o) =const. andu( o) =const. The latter are sur- the viscous potential of a transversely isotropic fluid. Thus, we
faces of constant viscosityl5). contend that(1) provides a first-order representation of a trans-
From(10) and(15) we identify the surfac& =0 (u==) as the versely isotropic fluid with viscous potenti&l(o,D).
threshold(or yield) surface. Stress points inside this surfdize The relative importance of the second term(B2) for a trans-
the shaded area of Fig) roduce no viscous flow. Stress pointsversely isotropic viscous materigluid) must ultimately be deter-
outside the threshold cause flow with finite viscosity. mined through experiment, e.g., through experiments mapping
From geometry, we recogniz€)/Jo as a gradient vector. At a surfaces{)=const., measuring the appropriate components of
stress poinwr on the surfacé) (o) = const.(Fig. 8), the associated flow rate and thereby assessing the concept of norm@lity Ap-
gradient vector lies along the outward normal to that surface. Apendix A). Experiments of this type have been conducted on
cording to(1), the rate of deformatioV coincides with the gra- transversely isotropic viscousreeping solids in the form of re-
dient vectordQ)/do and is thus similarly directedin the com- inforced thin-walled polymeric tubes, cf., Robinson, Binienda,
binedV, o space normal toQ (o) =const., cf., Druckef31,32. and Ruggleq35]. The results support the concept of normality
This concept of normality is a principal feature in classical plagsnd suggest that the second term(B2) is negligible for a trans-
ticity theory. Evidently, the rate of deformation produced by aersely isotropic viscous material.
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The Proportional-Damping Matrix
of Arbitrarily Damped Linear
s.ageres | Mechanical Systems

e-mail: angeles@cim.mcgill.ca

S. Ostrovskaya The vibration of linear mechanical systems with arbitrary damping is known to pose
g-mail: svetlana@cim.megill.ca challenging problems to the analyst, for these systems cannot be analyzed with the tech-
niques pertaining to their undamped counterparts. It is also known that a class of damped
Department of Mechanical Engineering and systems, called proportionally damped, can be analyzed with the same techniques, which
Centre for Intelligent Machines, mimic faithfully those of single-degree-of-freedom systems. For this reason, in many in-
McGill University, stances the system at hand is assumed to be proportionally damped. Nevertheless, this
817 Sherbrooke Street, West, assumption is difficult to justify on physical grounds in many practical applications. What
Montreal, PQ H3A 2K6, Canada this assumption brings about is a damping matrix that admits a simultaneous diagonal-

ization with the stiffness matrix. Proposed in this paper is a decomposition of the damping
matrix of an arbitrarily damped system allowing the extraction of the proportionally
damped component, which, moreover, approximates optimally the original damping ma-
trix in the least-square sense. Finally, we show with examples that conclusions drawn
from the proportionally damped approximation of an arbitrarily damped system can be
dangerously misleadindDOI: 10.1115/1.1483832

1 Introduction numerical conditioning of the matrices involved. Moreover, the
method is applicable tao-degree-of-freedom systems, for any in-
f’egern.

A word of caution is in order: Results drawn from the

While the theory of linear systems with constant coefficient
termedlinear time-invariant systemss well established, its ap-

with arbitrary damping IS St'!l a subject of resea_r@_h—e]). In- tem can be dangerously misleading, even in the presence of the
deed, the modal analysis of linear, constant-coefficient mechamBglSt approximation. We illustrate this claim with an example
systems has focused on systems wfoportional damping ' '

which allows the simultaneous diagonalization of the damping

and the stiffness matrices. Such a diagonalization, in turn, leadsto Nomenclature and Definitions

a decoupling of the system under study into a set of uncoupledthe mathematical model of linear, time-invariant mechanical
single-degree-of-freedom systems, thereby allowing for theiystems takes the form

study with the classical techniques developed for these systems. ) )

To be sure, systems with arbitrary damping can be analyzed MX+Cx+Kx=f(t), X(0)=xp, X(0)=vo, «h)
within the framework of state-variable mode(7]), but these i which

models lack the transparency of the usual second-order mod@Js; nx n positive-definitemassmatrix;

and hence, haVe not found theil’ Way into the dally engineeri@: nxn positive_semideﬁnit&jampingmatrix;

practice. K : nXn positive-semidefinitestiffnessmatrix;

Proportional damping occurs naturally in the discretization gf(t) : n-dimensional vector of generalized coordinates;
linear viscoelastic structures, but seldom occurs in the presencqp{; n-dimensional vector of generalized external forces.
lumped damping. The need to optimize structures and machinest is known that proportional damping occurs when the damp-
that comprise damping elements such as shock absorbers callsfigrmatrix is a linear combination of the mass and stiffness ma-
a thorough analysis of systems with arbitrary damping. The attices. A commonly accepted form of the damping ma@ixof a
thors proposed recently a novel approach along these (iB#s proportionally damped system is, thus,

Engineers, however, feel more comfortable when working with
proportionally damped systems, and hence, resort to a proportion- Cp=aM+pK @

ally damped model whenever the need arises. Nevertheless, guigerea and 3 are real parameters that are chosen by the analyst.
lines as to how to derive a proportionally damped model for @ formulating the eigenvalue problem of the systéh), both
system that is known to have nonproportional damping are ngties of the governing equation are premultiplied\by?, which

fully developed, although some progress has been rep@8e)). s also done with Eq(2), to yield

The subject of this paper is a procedure whereby the proportional . .

component of an arbitrary damping matrix is computed, that best M "Cp=alt+pM 7K, 3)

approximates the latter in the least-square sense. The methoghisehy making apparent that the foregoing damping leads to a
rObust, for it ISdII'eCL as Opposed tmeratlve, while preserving the linear combination of what is known as tmnamic matrix
- M~ !K and thenxn identity matrix 1. Therefore, matrices
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF -1 -1 f ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- M C.:P and M 7K share the same set .Of eigenvectors, which
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decem€Xplains why, L_mder forn2), the mathemat|ca| model at hand can
ber 17, 1999; final revision, February 28, 2002. Associate Editor: V. K. Kinra. Didde decoupled i.e., transformed into a system of uncoupled
cussion on the paper should be addressed to the Editor, Professor Robertddcond-order ordinary differential equations. However, notice that

McMeeking, Department of Mechanical and Environmental Engineering, Universi ; ; ; ; ;
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acceptgém <2) IS only one instance of a damplng matrix Ieadmg to

until four months after final publication of the paper itself in the ASMEX@NAL oF  Proportional damping: Indee.d, adding. a linear C_Ombination of
APPLIED MECHANICS. powers of the dynamic matrix to the right-hand side of E).

Journal of Applied Mechanics Copyright © 2002 by ASME SEPTEMBER 2002, Vol. 69 / 649



yields a new matrix that still shares the same eigenvectors withatrix is a vector space over the complex field
the dynamic matrix. Such generalizations of g matrix have Proof: Assume that am>Xn matrix A is given, and thaB andC
been proposed9]). are co-spectral witlA. It is apparent that
Now, sinceM is positive-definite, it admits the factoring (i) thenXn zero matrix is co-spectral with;
M=NTN @) (u) BfrC is co-spectral witm;_ _
(ii ) given any complex, B B is co-spectral withA.
whereN is a nonsingular matrix. One candidate to defihnean be Moreover, the operations of addition and scalar multiplication,
derived from the Cholesky decompositigii0]) of M, but other defined for these matrices, obviously satisfy the standard laws for
means exist, for exampleny square root oM can also work.  a vector space, thereby completing the proof.
Upon introduction of the above factoring in the mathematical Now, by virtue of the Cayley-Hamilton theorem and the above
model, Eq.(1), we can transform this model into a form in whichresult, we have
the coefficient of the highest-order derivative is then identity Lemma 3.3Given an nxn matrixA with acomplete sebf eigen-
matrix 1, namely, vectors, the linearly independent sgt¥}¢~*, with v<n, spans
. . 2 o o the space of matrices that are co-spectral wkthThis set is then
Y+AY+O%y=g(t), Y(0)=Yo=Nxo, ¥(0)=wo=Nv, 5, @ basis for the said space. For symmetric matrices .
©) We will limit the discussion below to only symmetric, positive-
with the definitions semidefinite(or definite matrices. We are interested fmojecting
y=Nx, A=N"TCN"L, ©O2=N"TKN"!, g=N"Tf the dissipatio_n matrixA onto the spe_lce@ of matrices that are
’ ’ ’ ' co-spectral withrQ2—we use caligraphic fonts for spaces and sets;
6) . X . h
in the absence of a caligraphf2, we use the caligraphic font of
As we proposed ifi8], we shall refer henceforth to forfs) as the its Latin counterpart. We terr®) the co-spectral spacef Q. By
monic representationf the mathematical model of E¢L). Note analogy with Cartesian vectors, whereby a projection onto a co-
that, in this representatioria) the new variabley, has units of ordinate axis is obtained from the inner product of the given vec-
generalized coordinate times square root of generalized mags,with the unit vector associated with that axis, we shall define
which means that the units gfare those of thenodal vectorof the projection of a matrix onto a space in terms of theer
the associated undamped system, i.e., the columns aftd@al product of the matrices involved. More specifically, we need a
matrix of this system([7]); (b) the “inversion” of N is safer than basis for the co-spectral spaceof . While any basis will do, it
that of M, for the condition numbe({10]) of the former isexactly is most comfortable to work with an orthonormal basisSuch a
the square root of the condition number of the latter, when thgsis can be readily obtained from the §&10~* by means of
condition number is defined over the Frobenius norm; @all  the Gram-Schmidt procedutfL0]). To this end, the orthonormal

coefficient matrices are symmetric. Also note that the two NeWLsis is defined as=1E }n—l We describe below how to define
matrices,A and {2, have units of frequency; moreover, they are, v ¢ ha basis matril;:eé( '

positive-semidefinite as well. Henceforth, we shall call the latter The inner product of twax n matricesA andB, which will be
the frequency matrixthe former will be called thalissipation needed in the sequel, is defined as '
matrix, in order to avoid confusion with the original damping '
matrix C. (A,B)=tr(AWBT)
Now it is apparent that proportional damping, which leads to a . . - Co . . )
damping matFr)ig of the forrFr)w dFi)spIayed in ECE), ?mplies that the WhereW is a p03|t|ve’-def|n|te weighting matrix that is defined
dissipation matrix takes a special forfy), that is a linear combi- according to the user's needs. Note that Ehebemu_s normof
nation of 1 and Q2, or of 1 and Q, for that matter, i.e., scalar any nxXn matrix now becomes, under the above inner-product

factorsa and g exist so that definition,

Ap=al+ Q. @) [All= Vtr(AWAT).
The generalization of Eq7) is, then, It is thus apparent that, if we want tie<n identity matrix1 to
L have a unit Frobenius norm, we have to defiieas
n—
7 ; o ® w="11,

By virtue of the Cayley-Hamilton Theoreih11]), the right-hand an? hence, the inner product becomes
side of the above expansion represents, upon a suitable choice o

the real coefficientd«,}§~ ", any analytic function of the fre-
guency matrix. Below we discuss a choice of the above coeffi-
cients that produces thdosest proportionabpproximation of a . .
given damping matrix in the least-square sense. while the Frobenius norm takes the form
3 The Co-spectral Space of Matrices Commuting With

1
A=\ /Etr(AAT). (10)
the Frequency Matrix Now we have

Two matrices that share the same set of eigenvectors will be E,=0°=1
termed hencefortlto-spectral A simple test to decide whether
two given matrices are co-spectral is to verify whether these m
trices commute under multiplication. If they do, then they ar

1
(A,B)= ﬁtr(ABT) 9)

hich is, by definition, of unit norm. Moreover, the projection of
onto Eg is simply

co-spectral; otherwise, they are not. 1 1

A central concept is recalled below: (AEp)= —tr(AE3)= —tr(A).
Lemma 3.1 Any square matrix is co-spectral with any of its inte- n n
ger powers Furthermore, the componen, of A onto E is

The proof of the foregoing lemma is straightforward, and hence,
can be skipped. Moreover,

1
Lemma 3.2 The set of co-spectral matrices of a given square Aozﬁtr(A)l'
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Likewise, the componem, of A onto E, is given by 1
tr(A%)= Wztr{[tr(A)lthr(AEl)ElJr- -+ tr(AE,_)E,_ 112

1
_ T
Ak_ﬁtr(AEk)Ek' or, upon further expansion,

tr(A)
Therefore, the componery; of A onto the subspace spanned by, (A2 y— ATt AL+t AEDE. 4+ tr(AE. )E
E, andE; is simply M(Ap)= — 7 tr{tr(A) 1+1r(AE)E, r(AE,_1)Eq_1]}

1 1 tr(AE,)
Ag;= —tr(A)1+ —tr(AE,)E, + ———tr{E4[tr(A) 1+ tr(AE,)E; +---
n n n

where we have recalled the symmetry Bf, for k=0,... n +Hr(AE-)En—1]}
—1. By extension, the component of the same makignto the
subspace spanned {ﬂk}'o is denoted byAy,..., and is defined, for

=1 n— tr(AE, -
|=1;-n-1 as y T8y = Y B, A[tr(A) L+ r(AELEy + -

1
A()l'“l = ﬁ[tr(A) 1+ tr(AEl) El+ ce +tr(AE|)E|] +tr(AEn71) Enfl]}-

Now, if we recall the orthonormality of, the above expression

Now it is apparent that the componehy, of A onto the spac&® simplifies to
is Lot
1l tr(AZ)= = >, trX(AE)). (130)
Ao==2) W(AEDE;. (11) n<%
0 Upon comparison of expressiofik3a) and(13b), we obtain
Thus, all we need to obtain the foregoing projection is the ortho- tr(ApA,)=0 (14)
normal basist. This basis can be found by means of the Gram- o7
Schmidt orthogonalization procedure: and hence, the two componerts andA, are orthogonal to each
other. Moreover, the relative errerof the foregoing approxima-
E,=Q%=1, tion is readily computed as
0 (Unt()1 AL \/tr(Af)/n_ \/tr(Ai) s
o= (1)) 1]’ N tr(A%)/n V tr(A%)

Let us now recall the definition®), which allow us to obtain a

2_ 2 2
07— (Im[tr(Q7 1+ r(Q°E,)Ey ] decomposition ofC similar to that of Eq.(12), namely,

Ez:HQZ—(1/n)[tr(92)1+tr(QzEl)E1]| : e
=0 L
where, apparently,
. Q"1 (1) 52 (Q" 1 Ey_»)En o Co=NTAoN, C,=NTA,N
"H[eT T (1) S B, 2B, o and hence,

. _ Ao=N"TC,N! A =NTC N
4 The Orthogonal Decomposition of the Damping e ) ] )
Matrix Upon substitution of the foregoing relations into Hd4), we
obtain

Based on the foregoing background, we have a decomposition T P . . . .
of the dissipation matrix in the form tr(N"'CoN""N7'C,N"H)=tr(N"'CoM™"C,N"")=0
and, if we recall that the trace of a product is invariant under a

A=Ao+A,, (12) cyclic permutation of its factors, then

whereA, —readdelta-perp—is the component @A lying outside tr(M~Co,M~1C,)=0
of the space spanned & and hence, it is therror in the ap-
proximation of the dissipation matrix with,,. By virtue of the OF
definition of the foregoing approximation, moreover, the two -1 “1\T7—
components of the decompositi¢t?) are mutually orthogonal, a UM ="Co(C, M) 1]=0.
relation that is made apparent below. That is: the product C,M~?! is orthogonal to the product
First, we calculate the inner product of the two foregoing conM ~1C,,. It is thus apparent that the orthogonal decomposition of
ponents: the dissipation matriXA does not lead to an orthogonal decompo-
sition of the damping matriC as such, but rather of a linear
tr(ApA, ) =tr(ApA) —tr(A%). transformation of it. This is not surprising at all, for the transfor-
] . .. mation of Egs.(6) is not isometric, i.e., it does not preserve the
Furthermore, the first term of the expression appearing in thgher product of the space at hand. Nevertheless, the component
right-hand side of the above equation is readily computed, recqtlb of the damping matrixC is guaranteed to lead to a decou-

ing Eq.(11), as plable system, namely,
12 . MX +Cox+Kx=f(t), x(0)=xg, X(0)=vy, (16)
tr(ApA)=— ; tr(AE). 13) g hence, the damping represented by ma&lgpis proportional

Moreover, the foregoing matri€,, is closest to the original ma-
The second term of the same expression is expanded, in turn,teg C in the least-square sense.
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4.1 The Least-Square Approximation of the Damping Ma-
trix.

The above results show that the proportional-damping ma- L

trix of an arbitrarily damped system cannot be obtained directly

from the given mathematical model, E@). That is, the projec-
tion of C onto the co-spectral space Bf does not lead to the
least-square approximation 6fwith a proportional-damping ma-
trix.

Kujath [9] proposed a proportional-damping matfixderived
from A in the form

A'=ETAE=D+G
whereE is defined as
E=[e & - &]

with g being theith (unit) eigenvector ofQ2, and hencek is
orthogonal, whileD is defined as

D=diag( 61,05, ** &)

and &}, is theith diagonal entry ofA’. Notice thatA’ is diagonal

Fig. 1 A two-degree-of-freedom model of a suspension

only if the system is proportionally damped. Apparently, the diag-

onal entries ofG are all zero, and hence, @)=0; moreover,
tr(A,)=tr(EGE")=tr(ETEG)=1tr(G)=0, a7
i.e.,

tr(Ap) =tr(A)=tr(A’). (18)

We prove below thab is nothing but the least-square approxima-

tion ETA,E defined above.

To this end, we show first that the two matrickg andA’, or
their counterpart&'A,E andD, have the same projections alon
a set ofn linearly independent vectors spanni@dgLet us choose,
for convenience, this set d@={Q}§1. Moreover, sinceA’ is
the dissipation matrix expressed in the bd«$], we also need
Q in this basis. LetQ)4 be the representation & in this basis,
ie.,

Q,=ETQE=diag w;,w;,, **,wp)
where{w;}] is the set of eigenvalues €. Hence,
Qf=diag 0,0k, -, 05).

Now,

Dﬂo—l Dl—l D—léa’—l A’
(D,Qg) = ~tr(D1) = —tr(D) = — 4 i =5 (A

1 0
= ﬁtr(A0)= (A,Qy),
where we have recalled E(L8). Likewise, fork=2,--,n—1,

1 1o 1
(D,QK)= ﬁtr(Dﬂg): EE Shok=(A,08) = ﬁtr(Aﬂﬁ)
1
=(Ap. ),

thereby proving thatD=ETA,E. Note thatD is apparently
positive-definite and hencd,, is positive-definite as well.

We illustrate now the foregoing concepts with three examples.

5 Examples

In the examples below, reference is made to the damping ratio

of a mode. In order to definermodal damping ratipthe charac-

conjugate factors leads to a quadratic factor of the fosm g;)
X(s—§) =82+ 2f wis+ wiz, where 0<{;<1 plays the role of
the damping ratio of theth underdamped mode ang that of the
natural frequency of the same mode. However, similar quadratic
terms are not directly available for real eigenvalues, sincer the
last linear factors of the product of E(L9) can give rise to up to
r!/[2(r—2)!] quadratic factors. We will not dwell on how to pair
the 2(h—c) real eigenvalues to yield the damping ratios of the
overdamped systems. In the examples betow? at most, and all

Yinear factors yield one unique quadratic factor.

5.1 A Two-Degree-of-Freedom Model of the Suspension of
a Terrestial Vehicle. A model of the suspension of a terrestrial
vehicle is shown in Fig. 1. The model consists of a body with
massM, supported by two spring-dashpot arrays. The stiffikess
and the dashpot coefficiet, for i=1,2, of the two arrays are
not necessarily the same. Moreover, the center of rf@mss) of
the body is located a distandefrom its geometric center and the
mass moment of inertia of the body about its c.m. is denotedl by
We will consider only two types of motion for the system, namely,
(a) up-and-down translational motion of the body alongtkeexis
and (b) small angular motion of the body about an axis perpen-
dicular to the plane of the figure. The mathematical model takes
on the form of Eq(1), with x=[x 6]" and coefficient matrices

M 0}
|
ki t+ks

0 J
cy(I+d)—cq(I—d)
K=[k2(l+d)—kl(l—d)
Now, we choose matrid as

"

C1+Cy
Cy(l+d)—cy(l—d)

)

ci(I—d)2+cy(l1+d)
and

Ko(1+d)—ky(1=d)
Ki(1—d)2+ k(1 +d)?

JM 0
o

the mathematical model of the system at hand in monic f@m

teristic equation of am-degree-of-freedom system is representeghen following. In order to ease the ensuing calculations, we as-

as a product of 2 linear factors, namely,
P(s)=(5—51)(s=51)(S—52)(5—52)" **(S—Sc) (S—Sc)

X(S=Scy1) (S~ Szn) (19)

sume the relations

|
c;=C, C,=2c, k;=2k, ky=Kk, dZE’ I=Mr?

where we have assumedairs of complex-conjugate eigenvalueswith r denoting the radius of gyration of the block. With the
and r=2(n—c) real eigenvalues. Every pair of complex-foregoing relations, the system matrices now become
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1 0 3 51/2
M:M[o r } =512 19(|/2)2}’
3 1/2
K:k[l/z 11(|/2)2}'
whence
N= N 1 0}
0
Moreover, we introduce the notation
7\=|— o= ° w2=£.
r’ M’ M

Then, the two matrice§? and A are readily computed as
3 5\/2 }

3 N2

92: 2
YNz 110/2)2

}’ A=0lo 2 1902)2

It is now apparent thaA andQ? do not commute under multipli-
cation, and hence, the system at hand is not proportionally

damped. Assuming the numerical values
AN=2V3, w=1 radls, M=1 ton,
and I=1 m, o=1 ton/s,
we obtain the system matrices displayed bétow

1 0 3 52 312
M= 0 112" 7 |5/2 19/4’ K= 12 114
Therefore,
3 V3 3 573
02= =
v 33| 573 57|

while the orthonormal basi§ comprises two matrices, namely,

10 ~0.993399 0.114708
EOZ[O 1}’ 1:[ 0.114708 0.993339
whence
2.368421 3.19062
A0 3 190620 57.6315;8
and
0.631578966  5.469634129
AL=A7480% 5 469634129 0.63157891

The eigenvalues of) are, moreover,
w,=1.703035858,w,=5.753231170,

while its eigenvectors are stored columnwise in maix

0.05744881285 0.9983484531
0.9983484531 —0.0574488128
Now,
2.1848205012 5.5059776[15
A'=ETAE=
5.505977616 57.81517949
and hence,

D=

2.1848205012 0
0 57.8151794

The units ofMl, C andK are ton, ton s, and ton §2, respectively, those ak

and Q beings™*.

Journal of Applied Mechanics

Table 1 Eigenvalues of the given system and its proportion-
ally damped approximation

Given System Proportionally Damped System
—0.8512987042 j1.590887366  —1.09241024% j1.306510995
—0.5102756076 —0.5782926128

—57.78712698 —57.23688690

0 5.50597761
6= 5.505977616 0

As the reader can readily verify=ETA,E andG=E'A E. The
Frobenius norm of the error in the approximation of the dissipa-
tion matrix with A, is computed from Eq(15), which yields
about 13%.

The mathematical model of the same system in decoupled form
thus becomes

7,+2.18420%, + 2.90033%,= h,(t)
2,+57.815179, + 33.099669, = h; (1)

wherez; andz, are the normal coordinates of the proportionally
damped system, anh(t), h,(t) are the projections of the gen-
eralized force of the given system in monic form onto the normal
coordinates. Moreover, the projecti@), of the damping matrix

C onto the spac® is calculated as

2.368421 0.9210576
Co=|0.9210526  4.80263

The computed eigenvalues of the given system and its proportion-
ally damped approximation are displayed in Table 1. It is apparent
from Table 1 that the given system and its proportionally damped
approximation have two complex and two real eigenvalues, that
are quite close to each other. Moreover, these eigenvalues indicate
one underdamped and one overdamped modes. The natural fre-
quencies and the damping ratios for the two systems are, corre-
spondingly, slightly different, as illustrated in Table 2. Note that
the natural frequencies of the proportionally damped system un-
derestimate those of the given system. However, the proportion-
ally damped system overestimates the damping ratio of the first
mode but underestimates that of the second mode.

5.2 AThree-Degree-of-Freedom Model for the Vertical Vi-
bration of Mass-Transit Cars. The mechanical modebf one-
half of a subway car with pneumatic tires is shown in Fig. 2. The
car is mounted on twbogies each carrying two wheel axles. The
above model consists of an H-shaped structural element, which is
for this reason termethe H in the subway jargon. Moreover, the
suspension itself consists of two parts, fhdmary and thesec-
ondarysuspensions. The primary suspension is composed, in turn,
of eight identical springs of stiffnedg and four more of stiffness
k,, wherek, accounts for the coupling of the chassis to the axle
andk, for the support of the motor-differential bridge. The car
body is coupled to the chassis via a secondary suspension, com-

Table 2 Modal parameters of the given system and its propor-
tionally damped approximation

Given System Proportionally Damped System

,=1.804337024 s!
£,=0.4998712741

0,=5.430226637 st
{,=5.367860910

®,=1.703035856 s!
1=0.6414487666

©,=5.753231170 st
{,=5.024583385
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Fi, T

Fig. 3 The iconic model of the suspension of subway cars

7.

Fig. 2 Layout of the suspension system

posed of two identical springs of stiffneks. Furthermore, the

spring stiffness of the rubber wheelskis. Except for the internal 3256 0 0

damping of the rubber in which the springs are cast, and for that M=| o0 1.971 0

of the tires, the system is undamped. Referring to Fig. 2, we have '

the definitions below: 0 0 1578

m, : mass of the chassis; -

m,/2: mass of each motor-differential bridge; 156.9 156.9 0

ms: one-half the mass of the car body. C=| —156.9 404.0 —247.1],
In an attempt to damp the vibrations observed when the cars 0 —2471 2471

run at speeds higher than 80 km/h, a study was conducted to

determine suitable values of dashpot coefficientandc, for the 60052000 —52920000 0

primary and secondary suspensions, respectifé).
The iconic model corresponding to the layout of Fig. 2 with K=| —52920000 54594000 —167400

added shock absorbers is shown in Fig. 3, where we neglect the 0 —1674000 1674000

damping of the tires. In deriving the mathematical model of the . )

system appearing in this figure, we define now the thredthence the two matrice® andA are given by

dimensional . vector of generalized coordinates as x 18443.48893 — 208898021 0
=[X; X, X3]' where all three components are measured from the
equilibrium configuration. Q2=| —20889.8021 27698.63011 —300.1640260,
The mathematical model corresponding to Fig. 3 takes the form 0 —300.1640260  106.83650
of Eq. (1), with matricesM, C, andK given by
48.187961 —61.935184 0
m 0 0 ¢ —¢ 0 A=| —61.935184  204.972096 —140.112194
M=/ 0 m 0,1 C=|~-C CtC —Cp|, 0 ~140.112194  156.59062
0 0 my 0 —Cy Co

It can be shown that these two matrices do not commute under
multiplication, and hence, this system, like the previous one, is not

kig ki O proportionally damped. Using the same procedure as for the first
K=| kKo Koo Ko example, we find the projectiofd,, of A onto the spac® as

0 Kys Kaz 158.432273 —40.325342 —34.74405
A,=| —40.325342 174.719532 —30.74326

where kyy=8ky+4ky+ 4Ky, Kipy— —8ky— 4Ky, Kop—8ky+ 4k, a4 T4A05E 30743266 7650887

+ 2Kz, ko3= —ks3=—2k;. Moreover, the manufacturer provides

the numerical values given belw while its complement\, is given by
k,=4900, k,=3430, ks=837, k,=1783 —110.2443123 —21.60984227  34.7440563
A, =| —21.60984229  30.2525629 —109.3689278.
m;=1.971, m,=3.256, m;=15.78 34.74405632 —109.3689278  79.9917496

where the value ofn; is given under full load, i.e., when the carsThe eigenvalues of} are, in turn,

are fully packed with people. Furthermore, the values of the dash- _ 1 _ _

pot coefficients that best damp the system were four{d 2h as ©1=9.092542549's",  41.194823595', 21087559115
and its eigenvectors are stored columnwise in mairix

€1=156.9, ¢,=247.1. (20) —0.7748604459  0.6259605113 0.08811769668

Using the foregoing data, the system matrices are readily calE=| —0.6211730188 —0.7798369042 0.07744988086
culated as 01171979980  0.005276513996 0.9930945517

2The units used in this example are the same as those of Example 1. Then
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Table 3 Eigenvalues of the given system and its proportion-

Table 5 Eigenvalues of the given system and its proportion-
ally damped approximation

ally damped approximation

Given System
—96.88268863 j168.2682971
—30.6630112% j10.35129840
—6.86385915% j10.53039184

Proportionally Damped System
—102.1831157j184.4644295
—27.5334201%)30.64187108
—4.693023046:j7.787802295

Given System Proportionally Damped System
—67.41861484j168.1615288 —103.8729329j183.5492179
—0.8578582497 [31.72446644  —24.3033185% j9.960961556

—266.1058354 —138.7439747

—7.091895084 —14.65419970

55.06684058 66.77996143 22.70847441

A'=ETAE=| 66.77996143 204.3662317 25.90924(029 two systems are more pronounced. Also notice that the propor-
tionally damped system shows a first natural frequency lower then

22.70847441 25.90924030 9.386045683  that of the given system, but the second and third frequencies

while observe the reverse relation. Moreover, the three damping ratios
of the proportionally damped system underestimate those of the

[ 55.06684058 0 0 given system. In particular, the second damping ratio of the pro-
D= 0 204.3662317 0 portional system underestimates the actual one by about 30%.
' An important feature of this example is that it illustrates that
0 0 9.38604568

L properties of a single-degree-of-freedom systems, or of propor-
and tionally damped systems for that matter, cannot be extrapolated to
_ arbitrarily damped multi-degree-of-freedom systems. While the

0 66.77996143 22.70847441 model of Fig. 3 may lead one to conclude that this system has one
G=| 66.77996143 0 25.90924029 undamped mode, namely, one motion under whighk X,=X3,
) the fact of the matter is, as Table 4 shows, that all three modes of
| 22.70847441 25.90924030 0

this model are damped.

The error in this approximation, computed with the aid of Eq. )

(15), gives about 45%. The mathematical model of the closest®>-3 A Three-Degree-of-Freedom System With One Over-

proportionally damped system in decoupled form then become§@mped Mode. We include this example to show the dramatic
) ] differences that can occur in the modal behavior of the given
2,+55.06684034, +1697.013488, = hy(t) system and its proportionally damped approximation. To this end,
5,+204.366231#,+ 44468.51488,— h,(1) we use the same parameters of the system of Fig. 3, but with a
75+ 9.386046082;+ 82.67432988,= h,(t)

different damping matrixXM whose third diagonal entry is one
order of the magnitude smaller than its counterpart in Example 2:
Where{zi}f is the set of normal coordinates of the proportionally 3.256 0 0
damped system at hand, wh{lhi(t)}f are the projections of the M=| O 1.971 0
generalized force of the said system onto the normal coordinates.

Moreover, the projectiorC,, of the damping matrixC onto the
spaceQ is

368.6169970 —185.4163721 —25.1191955

0 0 1.578

Then, the original system and its proportionally damped approxi-
mation have two underdamped and one overdamped modes, while
the eigenvalues are now substantially different, as can be seen
Co=| —185.4163721  286.9551152 —23.0209890 from Tables 5 and 6. Furthermore, while the second underdamped
mode of the given system is slightly damped, wih<3%, its
—25.11919552 —23.02098902  158.098515 proportionally damped counterpart is heavily damped, with
which thus leads to the closest proportionally damped system>r92%. As to the third mode, note that the damping ratio of the
the form of Eq.(16). The computed eigenvalues of the givergiven system is about two times as big as that of its proportionally
system and its proportionally damped approximation are didamped approximation.
played in Table 3. Our analysis then shows that design conclusions drawn from a
It is again apparent that the given system and its proportionajpyoportional-damping approximation can be dangerously wrong: a
damped approximation observe the same modal behavior: threede of the proportionally damped system derived using a least-
underdamped modes. Notice, however, from Table 4, that now thguare approximation can appear heavily damped, and not need-
differences between the corresponding modal parameters of thg any active control, when this mode is, in fact, slightly damped,

Table 4 Modal parameters of the given system and its propor-

Table 6 Modal parameters of the given system and its propor-
tionally damped approximation

tionally damped approximation

Given System Proportionally Damped System Given System Proportionally Damped System

»,=12.56987330 s!
w,=32.36309063 5!
03=194.1661020 s!
£,=0.5460563518
£,=0.9474685703
{3=0.4989680878

0;=9.092542540 s'
w,=41.19482358 st
03=210.8755910 s'
£,=0.5161397947
{,=0.6683708723
£3=0.4845658770

0,=181.1727612's!

w,=31.73606296 '

w3=43.44185385 st
£,=0.3721233501
£,=0.0270310230
£3=13.144406906

®,=210.9025879 &'

0,=26.26541547 st

03=45.09081849 s'
£,=0.4925161608
£,=0.9252973218
£3=1.700991239

Journal of Applied Mechanics

SEPTEMBER 2002, Vol. 69 / 655



and needing active control. Even the proportionally damped syBalhousie University, HalifaxNova Scotia, Canadawhile on
tem best approximated with the method proposed here in the leastbbatical at McGill University, motivated the work reported in

square sense can be dangerously misleading. this paper. The authors wish to express their most sincere appre-
] ciation to Prof. Kujath for the insight with which he contributed in
6 Conclusions these discussions. The first author completed this work while on a

The decomposition of the damping matrix of arbitrarily dampeliSiting Professorship at Nanyang Technological University
linear mechanical systems into two orthogonal components ws!Y), Singapore. The support of NTU, especially of its School
the subject of this paper. One of these components, the best @hMechanical and Production Engineering, is highly acknowl-
proximation of the given damping matrix in the least-squargd9ed-
sense, leads to proportional damping. Upon a linear transforma-
tion given by the factors of the mass matrix of the system, the two
components of the damping matrix are orthogonal, which justifié&eferences
the above claim on the least-square approximation of the dampingi] prater, G., and Singh, R., 1986, “Quantification of the Extend of Non-
matrix. The concept was illustrated with three examples. Appar- Egtz‘r(nf)rtiggallggcigz Damping in Discrete Vibratory Systems,” J. Sound Vib.,
ently, even the best proportionally damped approximation to a (AL, PP, L9 LE. P .
arbitrarily damped system can be misleading in that it can yield gz] mé”fﬂsétﬁ*’égi]'rnrzsmp%é',’\,llozzll’In}gfggﬂ'ﬁﬁ"?ﬂ;&g%ﬁ%ﬁ?ﬂggﬂiﬁ%ﬁmp'
heavily damped mode, while the actual mode can be slightly pp. 219-224.
damped. We have also shown, with Examples 2 and 3, that prop3] Roemer, M. J., and Mook, D. J., 1992, “Mass, Stiffness and Damping: An
erties of single-degree-of-freedom systems, or of proportionally _ !ntegrated Approach,” ASME J. Vibr. AcoustL14, pp. 358-363.

4] Gladwell, G. M. L., 1993,Inverse Problems in Scattering: An Introductjon
damped SyStemS for that matter, cannot be EXtrap()lated tB Kluwer Academic Publishers, Dordrecht, The Netherlands.

arbitrarily-damped systems. [5] Abrahamsson, T., 1994, “Modal Parameter Extraction for Nonproportionally
Finally, we have shown that the proportional-damping matrix  Damped Linear Systems,” Proc. 12 International Modal Analysis Conference.
that best approximates the nonproportional-damping matrix is{ﬁ] Kujath, M. R., Liu, K., and Akpan, D., 1998, “Analysis of Complex Modes

itive-definite if the latter is: el it iti idefinit Influence on Modal Correlation of Space Structures,” Technical Report, Cana-
positive-aetinite It the latter Is; else, It Is positive-semiadeftinite. dian Space Agency, St.-Hubert, Quebec, Canada.

We have_ also ShOW_n that th_e least-square a_pmeimati_On of ther] Meirovitch, L., 2001,Fundamentals of VibrationdvicGraw-Hill, New York.
nonproportional damping matrix with a proportional-damping ma- [8] Angeles, J., Zanganeh, K. E., and Ostrovskaya, S., 1999, “The Analysis of
trix can be computed from the same similarity transformation of ~ Arbitrarily-Damped Linear Mechanical Systems,” Arch. Appl. MecBy(8),

S . o pp. 529-541.
the dissipation matrix that renders the frequency matrix diagonalig) yyiath, M. R.. 1999, “Proportional vs. Non-proportional Damping,” Technical

as proposed elsewhere. Memorandum, Dalhousie University.
[10] Golub, G., and Loan, F. V., 1983Jatrix Computations The John Hopkins
University Press, Baltimore, MD.
ACknOW|edgmentS [11] Kaye, R., and Wilson, R., 1998jnear Algebra Oxford University Press, New

; York.
The research Wc.)rk reported he.re W.as made possible L.mﬁE] Angeles, J., and Espinosa, I., 1981, “Suspension-System Synthesis for Mass
NSERC (Natural Sciences and Engineering Research Council, Transport Vehicles With Prescribed Dynamic Behavior,” ASME Paper No.

Canada Grant A4532. Discussions held with Prof. M. Kujath, 81-DET-44.

656 / Vol. 69, SEPTEMBER 2002 Transactions of the ASME



Elastic-Plastic Contact Analysis of
neeninees | @ SPhere and a Rigid Flat

i etsion@t It. Et.smnl An elastic-plastic finite element model for the frictionless contact of a deformable sphere
e-mail. etsion Xﬁélg\;vozém pressed by a rigid flat is presented. The evolution of the elastic-plastic contact with

increasing interference is analyzed revealing three distinct stages that range from fully
elastic through elastic-plastic to fully plastic contact interface. The model provides di-
mensionless expressions for the contact load, contact area, and mean contact pressure,
covering a large range of interference values from yielding inception to fully plastic
regime of the spherical contact zone. Comparison with previous elastic-plastic models
that were based on some arbitrary assumptions is made showing large differences.
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Technion,
Haifa 32000, Israel

Introduction contact load and contact area expressions between the elastic and
elastic-plastic deformation regimes. Kucharski et[&R] solved

he contact problem of a deformed sphere by the finite element
Method(FEM) and developed empirical proportional expressions
fx\r the contact load and the contact area. Although the authors

The elastic-plastic contact of a sphere and a flat is a fundam
tal problem in contact mechanics. It is applicable, for example,
problems such as particle handlifid]), or sealing, friction, wear,
and thermal and electrical conductivity between contacting rou
surfaces. Indeed, an impressive number of works on the contac
rough surfaces, that were published so fsee review by Liu
et al.[2]), are based on the contact behavior of a single spheri
asperity(Bhushan[3]) in a statistical model of multiple asperity unreasonable

contact (Bhushan_[4]). Some_ of these works_ are restricted to The work in[1] employed the finite element method to analyze
”?a'”'y pure elastic deformation of the contacting spherg, eg, tﬁf‘e contact of two identical spheres, which by symmetry is
Elonedenng hWO{_'k of Gr;sepwofod and VIV|II|z|ams'ci5], Wh'Ch_I_'.S equivalent to that of one sphere in contact with a frictionless rigid
ased on the Hertz solution for a single elastic splierg., Ti- 306 The analysis ifL] was restricted to an aluminum sphere of

moshenko and Goodig]). Other works are restricted t0 puré ,ji,sR=0.1 m loaded with a mean contact pressure that never
plastic deformation of the contacting sphere, based on the moga?ieeded 2.3 times the material’s yield strength.

of Abbott a'_”d Firestong7], which neglects volume conservation As can be seen from the literature survey, accurate general so-
Of_}_r;e plaslt(lcally d_egormed Splher.e' lastic def . lytions for the elastic-plastic contact of a deformable sphere and a
e works on either pure elastic or pure plastic deformation gy fiat are stil missing. The existing elastic-plastic solutions
the contacting sphere overlook a wide intermediate range of intefier from several deficiencies caused mainly by assuming some
est where elzstlt():-pcl:a;tlc contact gréé/alls. dAn ?‘ter:‘?pt to dbrlldge "hitrary contact pressure distribution or an arbitrary evolution of
gap was made by Chang et 8] ( mode. In this model the 0 hjagtic region inside the sphere. The few existing finite ele-
; . i €fent method solutions are too restricted in terms of materials,
ence is reached, above which volume conservation of the sph metry, and loading.
tip is imposed. The contact pressure distribution for the plastical It shoulyd be noticed here that much research has also been done
defo_rmed spher_e was assumed to be_ _rectr:_mgular and equal to Sstly by utilizing the finite element methpdn the indentation
maximum Hertzian pressure at the critical interference. The C oblem of a half-space by a rigid sphere, €.43—16. However
model suffers from a discontinuity in the contact load as well as 1) the results provided by Mesarovic and Fléaﬁ]-for both a
the first derivatives of both the contact load and the contact areagf,q o pressed by a rigid flat and a half-space indented by a rigid
the transition from the elastic to the elastic-plastic regime. Thegghere "deep into the fully plastic regime, it seems that the behav-
deficiencies triggered several modlflcatlons by 9‘“‘?* rc_asearchq ‘of these two cases is different. Intuitively, one can see that in
Evseev et al[9] suggested a uniform pressure distribution, equgle indentation case the radius of the rigid spherical indenter re-

nded to describe elastic-plastic contact, their results concen-
fAted on the behavior of the sphere deep into the plastic regime.
%Sajlrprisingly, the mean contact pressure[il2] was, in some

ses, higher than the indentation hardness and therefore

d hi h bound Th Jlaced material in the indented half-space is confined by the rigid
sure ard phproaching zaro at the Contgct. ouncany. e authfffanter and the elastic bulk of the half-space. This is quite dif-
concluded their paper with a recommendation to find a more g&liey from the situation where the displaced material of the de-

eral model for the elastic-plastic regime. Chdag] used an ap- formable sphere is free to expand radially as shown schematically

proximate linear interpolation for the elastic-plastic regime by, Fig. 1

connecting the_va_lue of the contact Iqad at yielding inception 10 Thé p.resent research offers an accurate finite element method
thatdat theh beglnn|r|19 of Fhelfu.lly plastic regqulmr(]e. Zhao .e.t[fal]f solution for the elastic-plastic contact of a deformable sphere and
used mathematical manipulation to smooth the transition of theigiq fiat by using constitutive laws appropriate to any mode of

deformation, be it elastic or plastic. It also offers a general dimen-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; ; ; e ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- sionless solution not restricted to a specific material or geometry.
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01R Sphere surface
Zone 1 '
Zone 11
Fig. 1 A deformable sphere pressed by a rigid flat
@)
T O 0O O

ation after and before the deformation, respectively. The interfer-

ence,w, and contact area with a radiws,(see Fig. 1 correspond Bottom of the hemisphere

to a contact loadP.

The critical interferencew,, that marks the transition from the Fig. 2 Model description

elastic to the elastic-plastic deformation regifne., yielding in-
ception is given by(e.g., Chang et a[8])

(WKH 2
wc—

“\2E | R (1)

Finite Element Model (FEM)

The hardnessi, of the sphere is related to its yield strength by A commercial ANSYS 5.7 package was used to solve the con-
H=2.8Y ([18]). The hardness coefficieri, is related to the PoiS- 5.t proplem. The hemisphere, shown in Fig. 2, was modeled by a
son ratio of the sphere biChang et al[19) K=0.454+0.41v. g arter of a circle, due to its axisymmetry. The rigid flat was
E is the Hertz elastic modulus defined as modeled by a line. The material of the sphere was assumed
1 1-22 1-42 elastic-perfectly plastic with identical behavior in tension and
I L 2 compression. Although the model can easily accommodate strain
E E; E> hardening the simpler behavior was selected to allow comparison

whereE, , E, andv;, v, are Young's moduli and Poisson’s ratiosW'th existing previous models. A static, small-deformation analy-

of the two materials, respectively. In the case of the rigid Hat SIs type was us_ed and jus_tlﬂed by comparison W'.th the_ re;ults ofa
. large-deformation analysis. The von Mises yielding criterion was

The Hertz solution for the elastic contact of a sphere and a fllé§ed to detect local transition from elastic to plastic deformation.
provides the contact loa®, , and contact ared, , for w=<w, in The finite element method numerical solution requires as an
the form €’ e ¢ input some specific material properties and sphere rddes{1],

for examplg. However, in order to generalize the present solution
4 w |32 and eliminate the need for a specific input, the numerical results
Pe=3 ERY2p32= Pc(w—) (2) were normalized with respect to their corresponding critical val-
¢ ues at yielding inceptione., similar to Egs.(2) and (3). The
w normalization of the mean contact pressupe,was done with
Ac=mTRw=A— (3) respect to the yield strengthf, of the sphere material. The validity
@e of this normalization was tested by solving the problem for sev-

where P, and A, are the contact load and contact area, respe@fal different material properties (16@/Y<1000p=0.3) and
tively, at w=w,. Note thatP, andA, can be normalized b, sphere radii (0.1 mrRIR<10 mm). The dimensionless results of
andA,, respectively, to obtain simple exponential functions of thE/Pc, A/Ac, and p/Y versus the dimensionless interference,
dimensionless interferencey/w.. These functions are indepen-®/®c, were always the same regardless of the selection of mate-
dent of the material properties and sphere radius. rial properties and sphere radius.

Using Egs.(1)—(3) the mean contact pressumg,=P./A,, for The finite element mesh consisted of 225 eight-node quadrilat-
eral axisymmetric elements comprising a total of 714 nodes.

High-order elements were selected to better fit the curvature of the
® )1’2 ( ® )1’2 sphere. The sphere was divided into two different mesh density
=Pc

0<w IS

2
pe=§KH

(4)  zones. Zone I, within a ORLdistance from the sphere tipee Fig.
2), contained 87% of the nodes and had extremely fine mesh to

wherep, is the mean contact pressureadt w, . better handle the high stress gradients in this zone and to achieve

For o> w, the contact is elastic-plastic and a numerical soligood discretization for accurate detection of the contact area ra-
tion is required to find the relation betwees w., the contact dius,a. For this reason the typical mesh size was 8. 0&here
load, contact area, and mean contact pressure. The finite elenmst (Ro,)Y? Zone I, outside the OR distance, had gradual
method(for example, Refs[20] and[21]) is commonly used for coarser mesh at increasing distance from the sphere tip. The
such a numerical solution where the contact between the spharedel also contained a single two-dimensional target element lay-
and the flat is detected by special contact elemg@&). A yield- ing on the flat and 16 two-dimensional surface-to-surface contact
ing criterion should be adopted in solving elastic-plastic problemslements on the sphere surface in zone I.
In the present analysis the von Mises criterion, which correlatesThe boundary conditions are presented in Fig. 2. The nodes on
well with experimentgsee Bhushaf3]) was selected as the pre-the axis of symmetry of the hemisphere cannot move in the radial
ferred criterion. A recent example for the finite element methadirection. Likewise the nodes on the bottom of the hemisphere
solution to an elastic-plastic contact problem can be found in Lzannot move in the axial direction due to symmetry. Restricting
et al.[23]. also the radial motion of these nodes did not affect the results of

¢ Wc
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Fig. 3 Evolution of the plastic region in the sphere tip for 12 z}:u
=w/w,<110

Fig. 4 Evolution of the plastic region in the sphere tip for 1
_ . . . . sow/w.s<s11
the finite element analysi&~EA) since this boundary is very far

away from the contact zone and therefore has very little effect on
the contact results. d

The numerical model was first verified by comparing its OUtpoEgion between the edge of the elastic core and the outer front of

with the analytical results of the Hertz solution in the elastic rey : . : .
gime, i.e., foro<w.. The verification included the contact Ioade,)[.lt}:a plastic region, andll) an outer elastic subregion thereafter.

. ST evolution of these three subregions on the sphere surface for
Z?onrfgctthzr:; statln(:lg)sllm?]rwlgtf;r?rshse?jlﬁ;g?;r;ﬂgenblgt;[/t/]:e?qotr;ltgﬁu?{qﬁi%)lg’?6 is demonstrated in Fig. 6 that shows the radial locations

ge of the elastic coréll) an intermediate annular plastic sub-

and analvtical results was alwayvs less than 2.8%. Another ver: I_the inner and outer elastic-plastic boundaries normalized by the
cation of%he model was done ir)1/ the elastic- I.ast(i)E: regifoe 1 ontact area radius, as a function of the dimensionless interfer-
P 9 encew/w.. The horizontal dashed line ata=1 indicates the

<w/w<110 by increasing the mesh density to 2944 nodes and "~ boundary of the contact area. From the figure it can be

comparing the results with these obtained with the original 7 : _ . )
nodes. The largest differences in the contact load and contact ;i%g”y seen that below/w:=6 the sphere surface is fully elastic.

were only 1% and 3%, respectively. These two verifications es- w/©:=6 the plastic region reaches the sphere surface for the
tablish the validity of the numerical model with the original mesh
to study the behavior of the sphere in the elastic-plastic regime.

Results and Discussion

Figure 3 presents the evolution of the plastic region inside tt & 25 -
sphereg(within the dashed line frame shown in Fig. f@r increas-
ing interference values up t@/w.=110. The elastic-plastic
boundary at each interference is determined by all the nodes w5 25 -
equivalent total strain larger than the yield straég,. The axial
and radial coordinates in Fig. 3 are normalized by the critice© ‘
contact radiusa, . It is interesting to note the larger axial pen-= ., . .
etration of the plastic region compared to its radial spread. /
ol w.=110, for example, the plastic region penetrates aboag 32
below the contact surface and reaches only aboat. I the
sphere surface.

The evolution of the plastic region at its earlier stagesp,
<11, is shown in more details in Fig. 4. Up t0/w.=6 the
plastic region is completely surrounded by elastic material. /
wlw.=6 the plastic region first reaches the sphere surface al
radius of about 24, . At this point an elastic core remains locked
between the plastic region and the sphere surface. As the interl .00
ence increases above/ w.=6 and the plastic region grow, the
elastic core gradually shrinks as shown in Fig. 5. The shrinkay Dimensionless Interference, ®/®c
rate is very small beloww/w.=30 and rapidly increases thereaf-
ter. The surface of the sphere at the contact region is now divideg. 5 Dimensionless radial location,  rfac,, of the inner
into three subregions as followd) an inner circular elastic sub- elastic-plastic boundary on the sphere surface showing its
region extending radially from the center of the contact until thehrinkage for 6 <w/w, <68

Coordinate, r/a.

ial

Inner elastic-plastic
boundary

Dimensionless Rad
o

05+

0 6 10 20 30 40 50 60 70
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plastic regime
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Dimensionless Interference, ®/mc¢ p 0.289

(—) =l.l%—) for 1<w/w.<6 (5)
Fig. 6 Radial location of inner and outer elastic-plastic bound- Y 1 We
aries on the sphere surface for 6 =w/w <110 0117

p o |

(7) =l.6]<—) for 6<w/w =<110. (6)
w
2 Cc

From Fig. 7 it can be seen that the dimensionless mean contact

) ) . pressure of the finite element analysisediv,=110 approaches
first time. This occurs very close to the boundary of the conta{e \alue p/Y=2.8. This is identical to the ratio between the
area, atr/a=0.94. For 6<w/w:=<56 the annular plastic subre-harqness and yield strength found experimentally for many mate-
gion remains within the contact area. Its outer boundary, whi¢{ys as indicated by TabdL8]. Hence, the value gj at this point
first reaches the edge of the contact area/ai.= 6.2, coincides s that of the material hardneds, and, hencep/w,=110 marks
with that of the contact area while its inner boundary gradualfye inception of the fully plastic regime where the mean contact
moves towards the contact center as the elastic core shown in Fjgssure assumes a constant value equals to the material hardness.
4 shrlnks. Forw/ w.>56 the outer boundary of the annular plastic The CEB model[8]) predicts a constant mean contact pressure,
subregion somewhat exceeds the boundary of the contact aj@fich largely underestimates the finite element analysis results
Wh||e the inner eIaS“C core continues to Shr-lnk and d|sappe%§cept for a Sma” rang@/wc$3, Where |t |arge|y Overestimates
completely atw/w = 68. From there on the entire contact zone igne finite element analysis results. This is one of the limitations of
plastic and the rate of its radial expansion increases substantiafyis model as discussed by Evseev ef@.

From the above discussion it can be seen that the evolution ofzhag et al. modefl11] predictsp/Y values that are fairly close
the elaStiC'plaStiC contact can be divided into three distinct Stag%.the finite element ana|ysis results. The |argest deviation of
The first one for X w/w.<6 where the plastic region developsghout 9% occurs ab/w.=54, which was selected in RdflL1],
below the sphere surface and the entire contact area is elastic. Biged on the work of Johns¢4], as the lowest possible incep-
second one for & w/w <68 where the contact area is elastiction of fully plastic regime wherep/Y=2.8. Actually the fully
plastic containing an annular plastic subregion confined by innglastic regime starts a#/w.=110 as can be seen from the finite
and outer elastic ones. The third stage ddiw.>68 corresponds element analysis results in Fig. 7.
to a fully plastic contact area. The results obtained by Kucharski et |l2] cover the range of

Figure 7 presents the results of the mean contact pregédre 175< w/w,<2800 that is very deep into the fully plastic regime
as a function of the interference/ ., that were obtained by the and therefore outside the range of interest of the present analysis.
present finite element analysis along with the results from theThe change in the slope of the mean contact pressure at the
CEB model([8]) and from Zhao et al[11]. When the discrete transition pointw/w.=6 is somewhat similar to a typical stress
numerical results of the finite element analysis were curve fittedsirain curve where a change of slope occurs at the elastic limit. In
became evident that a distinct transition point exist&ab.=6. the spherical contact problem the valuéw.=6 is analogous to
This is clearly observed in Fig. 7 by the discontinuity in the slopghe critical strain, which corresponds to yielding inception. This
of the finite element analysis results atw.=6. Apparently, the point marks the elastic limit of the spherical contact interface.
transition from fully elastic to elastic-plastic contact area, whichrom there on the resistance of the material to increasing strain
occurs when the expanding plastic region first reaches the spheeereases and eventually disappears/as.= 110.
surface, changes the behavior of the mean contact pressure. Nohe finite element analysis results for the dimensionless contact
similar transition or change was foundatw .= 68 that marks the area and contact load are presented in Figs. 8 and 9, respectively,
inception of fully plastic contact area when the central elastic coedong with the results of Ref§8] and[11]. The corresponding
is completely eliminated. The empirical expressions obtainemnpirical expressions obtained from curve fitting of the finite el-
from the curve fitting for the mean contact pressure in the stagesent analysis numerical results in the various stages of the evo-
that were discussed above are lution of the elastic-plastic contact are
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Fig. 8 Dimensionless contact area, A/A., as a function of the
dimensionless interference, w/w,, in the elastic-plastic regime

The accuracy of the curve fitting for Eq&7) and (8) was better

(A) 09{‘0)1136 for 1< wlw,<6 )
—| =0. — or lswl/o.=
A, ¢ ¢

P ® 1.263

—| =14 —)

(PC 2 ((wc
A { )1.146
— | =0.94 — for 6=<w/w,<110. 8
Ac)z wc Cc ( )

than 97% throughout the range of w. .
From Fig. 8 it is clear that the contact area obtained by the CHBsults is mu_ch sma_ller and the present case can be considered a
model([8]) overestimates the finite element analysis results. Thegeneral elastic plastic one.

largest difference is 56% a#/ w.=4. This difference diminishes

than 7%. The reason for the larger deviation at smaller interfer-
ences is that the CEB model assumes volume conservation of the
entire sphere tip fow/w.=1. This in fact is equivalent to assum-
ing fully plastic regime of the entire sphere tip as soon as the
critical interference is reached. From Fig. 3 it is clear that the
plastic region develops gradually with increasing interference and
only for very large interferences the entire asperity tip is plasti-
cally deformed.

The Zhao et al[11] results underestimate the finite element
analysis ones by up to 18% at w.=10 and overestimate them
by up to 20% atw/w.=51. The Zhao et al. model assumes fully
plastic sphere tip ab/ w.=54. From this point on the contact area
is calculated from the geometrical intersection of the flat with the
original profile of the sphere according to Abbott and Firestone
[7]. This is also true for the CEB model, which therefore predicts
the same results at large interferences.

At w/w.=110 the contact area based on the Abbott and Fir-
estone approximate calculation is only 7% higher than the more
accurate result of the finite element analysis. It seems therefore,
that the Abbott and Firestone model is a relatively fair approxi-
mation for the contact area in the fully plastic regime.

Figure 9 presents the contact IoBdéP, versus the interference
ol w; . The contact load obtained by the CEB mo(é&l)) clearly
differs from the finite element analysis results. It overestimates the
finite element analysis results at small interferences, by up to 62%
at w/w.=2, and underestimates these results by up to 38% at
wl/w.=110. This is due to a combination of the very inaccurate
assumption of constant mean pressure and too large contact area
in [8] as shown in Figs. 7 and 8. Contrary to the CEB model, the
contact load obtained by Zhao et al. underestimates the finite el-
ement analysis results at small interferent2%% atw/w.=7)
and overestimates these results at large interferef@ateait 30%
at w/ w.=52).

Since the model is general enough to accommodate material
behavior other than elastic-perfectly plastic, various levels of lin-
ear isotropic strain hardening were also investigated. In the ex-
treme case of a very large tangent modulus that i& Othe dif-
ference in the results, compared to the present elastic-perfectly
plastic case, was less than 20%. In fact éw. <20 the maxi-
mum difference was less than 4.5%. For most practical materials
the tangent modulus is less than Ed¥ence, the difference in the

It is interesting to compare some features of the present contact

as the interference increases and ddw. =110 it becomes less problem of a deformable sphere and a rigid flat with these of the

600
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400 -
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Zhao et al. [11]

CEB [§]

0 20 40 60 80 100

Dimensionless Interference, ®/®¢

Fig. 9 Dimensionless contact load, P/P,, as a function of the
dimensionless interference, w/w,, in the elastic-plastic regime

Journal of Applied Mechanics

half-space indented by a rigid sphere. The fully plastic regime in
indentation starts a&/A.= 113.2 according to Francf&5], and at
P/P.=360 according to Johnsdr24]. The corresponding finite
element analysis results for fully plastic deformable sphere at
ol w.=110 areA/A.= 205 andP/P.=534. Clearly the two prob-
lems exhibit different behavior. The indented half-space yields
more easily than the pressed sphere. This is probably due to the
greater resistance to radial expansion that is imposed on the de-
flected material in the case of the indented half-space as compared
to the case of the deformable sphere.

Conclusion

The elastic-plastic contact problem of a deformable sphere and
a rigid flat was solved by the finite element method considering
the actual constitutive laws for the relevant regime of deforma-
tion. Hence, the present model is much more accurate than previ-
ous ones that relied on unrealistic assumptions regarding the con-
tact pressure distribution or evolution of the plastic region above
the critical interference. By properly normalizing the contact load,
contact area, and mean contact pressure, the present model pro-
vides simple analytical expressions that extend the classical Hertz
solution up to a fully plastic contact.

It was found that the evolution of the elastic-plastic contact can
be divided into three distinct stages. The first one fetd/ w,
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Dynamic Shear Fracture at

Subsonic and Transonic Speeds

in a Compressible Neo-Hookean

Material Under Compressive
L.m.srock | Prestress

Department of Mechanical Engineering,
University of Kentucky,

Lexington, KY 40506 A crack driven by shear forces translating on its surfaces grows in an isotropic compress-
e-mail: brock@engr.uky.edu ible neo-Hookean material that is initially in uniform compression. The material repli-
Fellow ASME cates a linear isotropic solid at small deformations, and preserves as a limit case for all

deformations the incompressibility that occurs in the linear case when Poisson’s ratio
becomes 1/2. A plane-strain steady state is assumed such that the crack and surface forces
move at the same constant speed, whether subsonic, transonic, or supersonic. An exact
analysis is performed based on superposition of infinitesimal deformations upon large,
both for frictionless crack surface slip, and slip resisted by friction. The pre-stress induces
anisotropy and increases the Rayleigh, rotational and dilatational wave speeds from their
classical values. A positive finite fracture energy release rate arises for crack speeds
below the Rayleight value and at two transonic speeds. In contrast, the transonic range in
a purely linear analysis exhibits only one speed. It is found that friction enhances fracture
energy release rate, and that compressive pre-stress enhances the rates for small crack
speeds, but decreases it for speeds near the Rayleigh @@i: 10.1115/1.1490374

Introduction Despite its linear elastic formulation, classical fracture mechan-
ics ([1]) gives rise to displacement gradient singular behavior at

Rapid crack growth in sheamode 1) is an important model &E crack edge. Nevertheless, a finite energy release rate exists.

for material failure. Because the fracture energy release rate o ; !
comes negative there, the Rayleigh wave speed often serves asths analyses haye been modifiedy. [6]) by introducing van-
theoretical limit for subsonic planar nonbranching groittj). It S1ingly thin cohesive zones at the crack edges that serve to relax
is known ([1—4]) however, that a positive energy release rate aidpe singular behavior. The energy d!35|pat|on rate obta!ned is gen-
occurs in the transonigntersonig range at the value2v, , where rally of the same order of magnitude as the classical energy
v, is the rotational wave spee@s]). Analyses of both the sub- rgleasg rates. This result and the decay of the s!ng_ular gradients
sonic and transonic cases generally treat linear elastic isotropicdth distance from the crack edgfl,10)) lend credibility to the
orthotropic ([6]) solids and assume that wave speeds and otHése Of classical fracture mechanics. _
material properties do not themselves change. However, large amTherefore, although incorporation of the cohesive zone model
bient compressive stresses could alter these values, and leaveP@g&es no additional analytical difficulties, the superposed infini-
material in an initial state of large elastic deformation. tesimal field is, as a first step, based on the classical fracture
This study, therefore, considers mode Il shear crack growth &pproach. This also allows some more direct comparisons with
an unbounded highly elastic solid initially in a state of unifornstrictly linear results, e.g[1-4]). Moreover, the insights gained
compressive pre-stress. For purposes of illustration, a compreisge the effects of pre-stress on wave speeds follow from the field
ible neo-Hookean material that, at small deformations replicategquations, not the conditions imposed at the crack edge. The
standard isotropic linear elastic sol{@]), is treated. The material aforementioned spatial decay is seen in the static analysis of in-
preserves as a limit case for all deformations the incompressibiliigntation by a rigid conical indentd9]): The effects of singular
that occurs in a linear solid when Poisson’s ratie 1/2. The behavior in the superposed field die out rapidly away from the
crack is a semi-infinite slit driven by shear loads that translate @fdentor apex.
its surfaces. A plane-strain dynamic steady state is assumed, iThe results developed in this article show that friction enhances
which the crack and loads move at the same speed. The speedtp@renergy release rate, and that the compressive pre-stress notice-
be any constant value—subsonic, transonic, supersonic. The figy affects that rate and solution behavior in general. As expected
tlon!ess crack is treatc_eql in d_etall, _and tht_a case of_ crack surfaqpﬂ]), pre-stress is manifest in the superposed deformations as a
subject to Coulomb sliding friction is obtained by simple quadraye facto anisotropy. Moreover, pre-stress causes the dilatational,
ture of the frictionless results._ _The ar_lal_ysfls is exact, and _aﬂﬁj"tational, and Rayleigh wave speeds in the crack plane to in-
([8,9]) based on the superposition of infinitesimal deformation§esse from their classical valugs)).
upon large. For subsonic crack growth, pre-stress generally enhances en-
" Contributed by the Applied Mechanics Division ofi AMERICAN SOCIETY OF ergy release rate for low crack speeds and whenl/2. In the
MECHANICAL EN)(IBINEERpSpfor publication in the ASME GQURNAL OF APPLIED ME- tran_s_omc case, pre-stress generates two Cr_aCk speeds that exhibit
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August 8POSitive release rates. Both speeds vary with pre-stress, and ex-
2001; final revision, February 8, 2002. Associate Editor: AK. Mal. Discussion on threeed the single linear isotropic val{e]). The higher of the two

paper should be addressed to the Editor, Prof. Robert M. McMeeking, DepartmengcﬁeedS is associated with release rates that exceed the linear iso-
Mechanical and Environmental Engineering University of California—Santa Barbara, . | hile th f he | d fall bel h
Santa Barbara, CA 93106-5070, and will be accepted until four months after fikPpic value, while the rates for the lower speed fall below that

publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. value. Moreover, while the linear isotropic rate is actually un-
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bounded wherv=0, a finite rate exists for the lower speed in- P 2mu “
duced by pre-stress. The analysis begins with discussion of the — a@y=—(2m-my)— —3p, a;=—, a,=0. (10)
isotropic compressible neo-Hookean material. il il Jir

The dimensionless constant{,m) are determined as follows:
TakefR in X, to be a cylindrical bar of cross-sectional arkg,
Basic Equations and place it in a deformed equilibrium stateunder uniaxial load

P. If the bar axis is aligned with th&;-direction, the Cauch
Consider an elastic bod} that is homogeneous and isotropicgiregses are g ! y

relative to an undisturbed reference configuratiyn A smooth

motion x= x(X) takesR to a deformed equilibrium configuration P )
N. The Cauchy stresE in N is Tu=7, T=Te=0, Ty=0 (i#k) (11)
T=ayl+a,B+a,B2, B=FFT, F= (1) where A is the cross-sectional area ¥y and uniform stress is

X assumed. Because define the principal directions with stretches

— — _y2 .
where (g, @4 ,a,) are scalar functions of the principal invariants)‘;da)\nd_)‘f;é‘r)‘hTe'rQ_ .);f{?]% f;r.;;OT%%eTgr?:.aneé?qu'T?%)ns'
(1, 11, 1) of B, and body forces are neglected. Experimentall 1 1, W 1! Xial unit ex on, 1A

based inequalitie§ 12]) tend to support the restrictions 10), and(11) combine to give

2
ao—1ay<0, a;+la,>0, a,=<O. @ P_.. = AT 6,[2M=Mo) , _2Mm o

—, A7t - =

. . ) . 1+e,” T\ 1+e /7T (1+e)?

An adjacent nonequilibrium deformed configurati®h is ob- ! ! ( v (12)
tained by superposing a displacemarthat is infinitesimal almost ) ) ) )
everywhere and depends anand time. This requires an incre- These formulas relate a Piola-Kirchoff stress to unit extension,
in X*. To the first order irH=au/ax its components in the prin- homogeneous linear isotropic solid for small deformations re-

cipal reference system, i.e8=diagi\?\3\3 where ), are the d4YI"€S that

principal stretches, are P d
Th=N{jHij S+ micHict miHi (39) Ao d_el(A_O Taudry (@m0hmh (13)
i’k:7\ik)\§x (30) aﬂgrﬂe v is Poisson’s ratio (&£v»<1/2). This is accomplished
= mihg (30 1—4p
me=1, 2m=———r. (14)

Here (\j,,ui,) are the generalized Lame’ constants, i.e., they are
independent of time and positior;, is the Kronecker delta,

(i,k)=(1,2,3) and the summation convention does not apply, afigcan be shown that2) is automatically satisfied when K3

<1/2, but the condition
1 aao 06!1 (?CYZ
E?\ik:mﬂ\?mﬂ\fm, Bik= i = ar+ ap(\f+ ). > 2m

In X incremental traction conditions on a surface with out@rises for 6<»<1/3. This implies a critical compressiv®{0)
wardly directed normah can be written in terms of the vector State, but it is noted that even such a state is highly elastic, e.g.,

(15)

JIT>1/2 (v=0).
tW=T'n+Tn(n.HN)—THn (5)
BecauseNg is a homogeneous configuration, the incremental bal-
ance of linear momentum reduces([8]) Rapid Fracture: Superposed Infinitesimal Deformations
divT' =pl (6) Now take R in Xy to be an unbounded solid with a closed

. . . . _ semi-infinite slit described in the fixed Cartesian basi 0,
wherep is the mass density;) denotes time differentiation, and 2y <0. The smooth motion Sy

Cartesian basis is understood. Finally, in terms of the principal

stretches, X1=NMX1, Xo=AoX5, X3=X3 (16)
I=N2HN3+03,  H=AA2+NAN2+00N5, 111 =A2A2N2 takesfk to the plane-strain equilibrium stakewhere
(7) T11: O, T22: a, )\3: 1. (17)

A Hadamard material can, in view ¢1), be characterized by ) . . .
Hereo<0 is a specified uniform compressive stress. Ndvoc-

dG(I11) 1 bo cupies an unbounded region with closed gljjt=0, x;<0 and
GOZZWWy ar=—=(ay=bol), ary=—= (X ,\g) are principal directions and stretches. For the compress-
\/m \/m ible neo-Hookean modél), (7), (10), (14), (16), and(17) com-
®)  bine to give the formulas
where @g,bg) are material constants such tregt—by=pu, u is

2
the shear modulus, ar@(1)=0. Settingb,=0 produces the sub- N -7 i \]1s i) Nono= JIIT
class of compressible isotropic neo-Hookean matef[&B and, 2@k @ 2u 2u) 12
as a generalization of a form used([13-15), we consider (183)
! ! 1)+ ! 1)2 9) T ! 1) T=0 (i#k) (180)
—G=my| —— m —-1] . =u|l —=——|, Ti= i
uw 0 I_I T \/m 33T M \/; P ik
This reduceg8) to the two-parameter model that complete the description 8% in X. In (18a)
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13

w
1+\/1-—
We

1/3
[0} A%
1- ‘\Il——) } ——
We

I = (maw) 23 +
(19a)
for (1/4<v<1/3,0<w<w;) and (1/Xv<1/2,2m—1>0),
while e [
1 1 \
J=2Jw\/=(1-2m) cos—tan‘lxlﬂ—l (1%) ANNN S
3 3 e —_— ) S
governs for (/& v<1/3w>w.) and /) //// IS X
1 1
J =2 §(1—2m) cos§(w—tan1\/wi—l) v
© A y

holds when (&Xv<1/4w>w.), where . ) )
Fig. 1 Schematic of growing shear crack

L3 (3P (1-4n(2v-1) -
0™ 1 om “22) @m0
Equations(19) give for the typical valuesv=(0,1/4,1/3,1/2), _
respectively, u;=0 (x>0) (250)
M:(w”% \/;1001/3’1)_ 1) for y=0. Here&( ) is the Dirac function. In light of2) and(22),

the relevant stress-strain equations are
These results show that this neo-Hookean compressible model

preserves as a limit case for all deformations the incompressibility i r _
that arises in a linear isotropic solid wher1/2. It is noted that 1 T1=(x+o)uy (X~ o)Uyy (269)
(18)—(21) are valid fore>0 as well.
In view of (2)—(4) and (18), the generalized Lame’ constants 1, 1 1
for any superposed infinitesimal deformation are ;Tzz— X~ Up x| x+t P Uzy (260)
1 1
Mﬁu(}(— —), Ay=px—w), Ny=p X——f) 1l =wu; +iu2 . (260)
w 11 m 21 o 12 Y ® , X

22a)
(222) Here (), signifies differentiation with respect . In the steady

.M , , ) 1 m state the superposed displacements (,) depend or(x, y) only,
Ma= g Pe= Mo, MkSZTv X=2 ;Jr nee and time derivatives in the inertial frame can be written as
2% —v(),x. In view of (6) and (26), then, the field equations in
(220) >0 are
where k=(1,2,3). Some\|, take on negative values unless a 1
restriction on pre-stress is imposed, e.g., (X+ - Cz) Up st @Uz gy XUz =0 (27a)
m 1
o<0(v=0), o<— =7 1 1
‘/2 Xulyxy“"(;_ C2 U2' XX+ ;Uzyyyzo (27b)
2u 1 1 . . .
o<—|v== o<oo| v=—|. (23) Wwherec is the dimensionless crack speed
V3 3)’ 2
The most severe restriction, fer=0, is of no consequence in this c= 1, v,= \/E (28)
analysis. Settingg=1 (o=0) in (22) in view of (18a) appropri- Ur P
ately yields the isotropic result7]) Equations(26) and (27) exhibit the typical([8,9]) anisotropy in-
2uv 1 duced infR by pre-stress. In additiory, should be bounded as
Kik= M )\i,kzlfzv(0< V<§)- (24)  x?+y?—o, and should be finite and continuous everywhere

except perhaps at=0, x=—L.
The superposed infinitesimal deformation is triggered when shear

forcesS>0 (line loads in thexs-direction are applied to both slit

surfaces. They translate in the positixgdirection at a constant .

speedv, and cause the slit to extend as a shear crack in thaplution to Related Problem

direction. A steady-state dynamic situation is achieved in which Consider now the related problem of an unbounded solid gov-
the crack speed is alsg and the forceSremain a fixed distance erned by(26)—(28), but with the slit replaced by an extending line
L from the edge. This is depicted schematically in Fig. 1, wheredf displacement discontinuities. Thus, two half-spacgs-,

is noted that, for simplicity, the coordinatds, y, z) replace y<Q) are treated, subject to the unmixed matching conditions
(x1,X2,X3), respectively, and translate with the crack edge. The

superposed deformation is one of plane strain and antisymmetry. [T5]=[T2]=0, [u;]=U(x), [uy]=V(x) (29)
Therefore, only the half-spage>0 need be considered, subjec

to, in light of (5), the conditions tfor y=0, wher¢[ ] signifies a discontinuity as theaxis is crossed

from y=0— to y=0+. The functions (,V)=0 for x>0 and

T,,=0; (2%a) vanish continuously at=0. The systeni26)—(29) can be solved
, by use of the bilateral Laplace transfofi7]) and, by following
To=—Sé(x+L) (x<0), (2%)  the procedure of13,15, the results
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~ 1 [ U(tdt way K by
== c C2te [(t—x)2+a%y? 2 (t—x)2+Db%y?
1 [ V(hdt[K,  t—x
o cc’te | a (t—x)2+a%y?

1 t—x
*b(w+;)—ﬁn(t_x) vy (30a)
B 1 u(t)dt| wa(t—x) K t—x
W=7 c C®+e [(t—x)?+a%y? 2b (t—x)?+b?%y?
1 [ V(tdt 1 by Kiay
T cC’+e o] (t=x)Z+b%y?  (t—x)Z+a?y?
(300)

are obtained fory>0 for subsonic values ot. In (30) the
definitions

o 2
e=—=w——, K=w+—-——c? K,=——c? (3la)
o 0}
1 1 1
b=—\ci-c? a= ci-c?  cp=—,
Jo ' b Vx+e " Vo
1
Ca= X+;>cb (31b)

hold, andC denotes integration over the real inter¢ale,0). The

1 1
B:\/_;\/szcﬁy a:ﬁ CZ*Cgl (34a)
Xg=X+pBye(—x,0), X,=xtaye(—=,00 (34b)

and it is understood that nonintegral terms do not appear unless
their arguments lie in the intervals specified by (34 These
terms, therefore, represent signals with plane fronts that radiate
from the displacement discontinuity regigri= 0, x<<O.

Analogous expressions fgr<0 can be obtained, and it is noted
that whenV=0, these counterparts arid0), (32), and(33) ex-
hibit antisymmetry with respect tg=0, and satisfy (24,c).
Thus, if U is interpreted as the slifrelative tangential displace-
men) of the crack faces, and chosen so thatl§p % also satis-
fied, then(30)—(34) comprise the solutions for the superposed
infinitesimal deformations in the crack problem. The subsonic
case is considered first.

Subsonic Case

Application of (2@) to (30) with V=0 and use of the standard
([18)) result

(t_x)—2+|(2—>7T(S(t_X)(k:O+) (35)

give the formulas
1, R 1(dUdt 2t
2o re) 7 . dt X’ (362)
R=2(w?+1)ab—K, K (360)

quantities €, ,C,) are, respectively, the rotational and dilatationafo” Y=0 in the subsonic (&c<cy) case. The dimensionless
wave speeds associated with teirection, nondimensionalized quantity R is similar in form to a standard Rayleigh function

with respect tow, . The dimensionless parametées b) are real

([5,13,14) for the linear isotropic solid and reduces to that form

and positive, and indicate, therefore, that the subsonic case col@en @=1 (¢=0). It can be shown thaR has the rootsc

sponds to &<c<cy,.
For the transonic and supersonic casgs.c<c, andc>c,,

==*cg, Where 0<cr<c,, for any O<w<1 (0<0). That is,
cry, is the Rayleigh wave speed associated with #ais. The

respectivelyb and(b, a) are imaginary. Therefore, the branch cutéluantity R also vanishes whea=b, i.e., c>+e=0, but (36)

Im(c)=0,/Re()|>c, and ImE)=0,|Re()|>c, are introduced for
(b,a), respectively, such that R&&)=0 in the cutc-plane. Then,
for the transonic cas€30) are replaced foy>0 by

1
U1:; c

K.
U(t)way+ %V(t)(t—x)

c’+e (t—x)2+a%y?

1 1
—m KU(X5)+B w+ ;)V(Xﬁ) (32a)
1 dt K, 1
Uz—; . e waU(t)(t—x)—TV(t)aym
KU ! V 32b
+mﬁ (Xg)— wt+— (Xg) (320)
For the supersonic case, finally, the results
= U KU
U=z gl @ (Xa)—§ (Xp)
i LSy v 333
T2 e | a (Xa)+ BV(Xp) (33a)
1 K
UZZETe waU(Xﬂ)‘f‘ EU(XB)
! ! Vi K.V 33b
+m wt+— (Xg) =K V(X,) (33b)

hold. In (32) and (33),
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remains finite because the teaf+ e also appears in its denomi-
nator. Indeed, it can be shown th@&0a,b) for y>0 exhibit no
roots or singular behavior when=b due to the same cancellation
effect.

For simplification,

therefore,[14] is followed and the

factorizations
w
R= 1+; w(a—b)R’, (37a)
_ x(cPte) a7
7 w(xtw)(ath) (370)
introduced, where the dimensionless quantity
2(w?+1)x
’— 2 + A
R’'=c“(a+b) o+ @) (38)

has only the roots= *cg. Itis, therefore, the effective Rayleigh
function, andcg can be obtained by rationalizing the equation
R’=0 into a cubic inc? and then discarding the extraneous roots.
An alternative approack{19]) gives a formula that is analytic to
within a simple quadrature:

1 \/ 2(0?+1)yVo
KBy Y (x+w) (Yot Vxr o) (5%
In GozifCa gtan’1\/1+2 \/t—z_—cg
m)e, T X Vet
2 1\ x
x|z w+;)x+—w—1 (3%)
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Use o_f (3@&) and (37) in (25b) produces the singular integral 1 ) . 0 1 o
equation v= §+ ;tan 2T 1)ap < v<§ . (48)
R’ 1 du dt S . . .
— = —— —— =~ Z5(x+L) (x<0). (40) It is known ([2]) that standard singulatbrittle) crack edge
2b(a+b) m cdt t—=x behavior—and therefore, a finite fracture energy release rate—in a

linear isotropic solid occur for transonic crack growth only when
Here (P) denotes Cauchy principal value integration. Tké&b) =v2v, . The results(45)—(48) show that the compressive pre-

defines the gradient dfl is of no consequence; the steady state ress produces two such speeds. Whert v, , (46b) reduces
analysis gives displacements only to within an arbitrary rlgnf; the subsonic forni42) and ' -

body motion. Solutions to equations of the for@0) are well

known ([20]), and, in particular, the procedure used 21] gives du 20 Ix+o S JL (x<0) (4%)
—_— = — X<
dU 2ba+tb) s L dx o’ +1 Vyx—oum [“x(x+L)
ax 7 (x<0). (41)
x @R 'U‘V X(X+1L) mo 2w Yt+to S 0 &
It can be shown that the integration @fl) appropriately vanishes u_r E.= Jol+1l Yx—o L =0 (4%)
as x— — o, Substitution of(41) into (36a) and use of(37) and ) )
Cauchy residue theor§f21]) gives Forv=c,v,, (42) again arises but now
s L du 1 xto S \/E
L S— _—=—— — x<0 508,
Th=— oD (x>0) (42) ax Ta wa—l w7 Joxer ) (x<0) (509)
as the shear traction on the crack plane ahead of the crack. With B V2 [xtoe s
(41) and (42) available, the fracture energy release ragter unit v Eo 7o Vox=1 1T >0. (5W)
of length in thez-direction E, can be, aftef1], derived as '
For the supersonic case>c,, (33) indicates that there will be no
ﬁE o 2ch(a+hb) < (43) stress ahead of the crack, and no energy release rate. Thus, this
vy w0 LR’ ’ case will not be considered further; a study of the case in a tran-

. . sient situation is given ih22].
It can be shown thaR’ <0 only for 0<c<cg; that is, a positive g 22}

release rate arises only in this speed range. Thus, the Rayleigh
speedcgy, emerges, as in a linear isotropic sol[d]), as a limit  Crack Surface Friction

speed for subsonic nonbranching shear crack growth. _ ) )
When fracture occurs, frictional resistance can arise on the

newly formed surfaces. To incorporate this effect, we assume that,
. . while frictionless slip occurs generally, a finite region governed by
Transonid/Supersonic Cases Coulomb friction trails the crack edge. Because the superposed
Use of(32), (26b), and(35) reduces (25) to the equation infinitesimal deformation is antisymmetric, only the compressive
pre-stressr<<0 provides a normal force on the crack faces. The

2
w 1 a f ﬂ dt & du § S(x+L) governing equations for the deformations remain unchanged upon
c’tew cdt t—x 2,3(0 +e) dx  u introduction of the friction zone, except that (B)is replaced by
(x<0) T5=—S8(x+L)—yoH(x+1)(x<0). (51)
(44) HereH( ) is the step function, €1<L and y(0<y<1) is the
for the transonic range,<c<c,. In this instance, two casesdimensionless friction coefficient. Wher< 0, it is noted that the
emerge: Foc,<c<c_ orc,<c<c,, where step function in(51) is, in fact, the integral of the Dirac function
with respect toL over the interval (0). This implies that the
_ /w+ i c. = \E solutions for(51) can be obtained by adding to the frictionless
' * ' results just presented a second set of expressions that follow from

those results by replacing with yo, and performing the afore-

V2<c <ci(0<0), c.=v2(s=0) (45)  mentioned integration. Thus, for allowable<@<cg) subsonic
use of(37b) and the procedure if21] give crack growth,(41) and(42) for y=0 become
dU 28w S ap dU 2b(a+b)[{SJL ) T+ V=]
& T K K5(X+L)+2(w +1)— (T) X+|_ a— R L ‘yO'\/— \/_+yaln \/|——\/—_x|
(x<0) (462) (x<0) (52a)
2 [ [0 X\Y S\/_ |
_ 2 — ’
1_7T(w +l)aﬁ (C2+e)DS(L X+ L (X>O) T2l_ X+L_2’}/U'\/— \/—+2’}/(Ttan 1\/; (X>0)
(46b) (520)
The dimensionless eigenvalweand dimensionless positive quan- . .
tity D are given by and(43) is replaced with
K. K 1 1 Mo 2cb(a+b) )
o= —tant ZE,=m——— ——zw\/’ (53)
tan m 2( 2 <v <O) (473.) v, 7R’ \/_

Ay (w?+1)2 Because $,0)<0, (52) and (53) show that friction enhances
D=1+|"——"--3-20w?|B?— 0?(2+30?) B*— 0*p® crack edge fields and the energy release rate. Althoughydhe
Xto terms do not decay as strongly as tBgerms, the integral of

(47) (52a) still vanishes asc— —o0. Analogous results hold for the
Forc_<c<c, , however, the signs a#6) are reversed, and  two transonic caseEc.); in particular,
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EE B 2\/5 X+w( S

v, © 'rr\/wz-i-l X~ w \/E

pp 0 [fxre (s

v, ¥ mew Yex—1\\L
Full Fields

2
—ZYUﬁ) (c=c.)

(54a)

2
——ZWW) (c=c,). (54)

Differentiation of (30) and (32), substitution of(52) and its

transonic counterpart, and use of Cauchy residue theory in theUl,x=—w2+l _,mra

manner of13,15,2] gives fory>0,0<c<cg

2b(a+b) v2S

S.(x+L)+C,ay

U= reR um

K Sy(x+L)+Cypby

@7 (x+L)2+a?y?

2b(a+b) V2yo

o(S;é,

2 (x+L)Z+p?2

K
+Cada) — 5 (Spépt Cb¢b)}

_ 2b(a+b) v2S
Y2x=(cZreR um

K Cp(x+L)—Sby

" (Zre)R pum

(559)

S,ay—C,(x+L)
P (x+L)2+a?y?
2b(a+b) V2yo

2b (x+L)2+Db?y?

X

Here the definitiong31) and

(qusq):

K
80(Sada— Cata) + 55 (Cobo— Soeby)

T iy ex

(c®>+e)R'

. (5)

(564)

(x+h+qgy X+ X
=In~/ , P =tan ‘———tan 1—
& x“+q%y %a ay ay

hold, whereq=(a,b). For the transonic case=c_ the results

for y>0 are
e V2
Uix=575 71 pumra
w V2 C.(x+L)—S,ay
U2x= 0751 wra | (x+ )2+ %y
" Vyto

Y0 (Saéat Cadpa) — Sm

(560)

S.(x+L)+C,ay

(57a)

2,2 +70'(Sa¢a_ca§a)}

(570)

(57c)

For the transonic case=c, the results fory>0 are
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Table 1 Dimensionless wave speeds for different pre-stress
levels

ol Cp Ca (v=0) c,(v=1/4) c, (v=1/3) c, (v=1/2)
-1.0 1.2721  1.799 2.2033 2.5442 w
-0.5 1.1317  1.6005 1.9602 2.2634 ,
-0.3 1.0776  1.5239 1.8664 2.1552 »
-0.1 1.0253 1.45 1.7759 2.0506 "
-0.05 1.0126  1.432 1.7538 2.0252 .
0 1.0 1.4142 1.6818 2.0 »
() S.(x+L)+C ay
Y0 (Saéat Catpa) — SW
e 1 SVL 1
50T ama| g YoV ==
M B —Xg
\/|—+ AV XB
+yo In|———=£ (58a)
\/l—_ N—Xg

Ca(x+L)—Say

U2x= 0201 70(8a¢a_ca§a)+sm
e 1 SVL {) 1
_2(w2+1) pma XB-i-y_’ya-I /_XB
J==x
+yoin W—_X/j (580)
B
7 wx—1 1 B
a= m, ,8—;, XB—X+,3yE(—O°,0).
(58)

It is understood that the terms {B8a,b) with coefficiente appear
only when the argument; lies in the range specified $%8c). In
view of the general fornéZ) and discussions of the linear isotro-
pic case([1,2]), such behavior might be expected. However, such
terms do not appear if67), nor do they arise whe(b7) and(58)
coalesce to the linear isotropic case=(v2) in the limit o
=1(o=0). That is, only in the transonic case-c, under pre-
stress does a signal with a plane front actually radiate from the
growing crack.

Pre-stress Effects: Some Calculations

The prominence of the dimensionless stretch ratio the ex-
pressions for the superposed infinitesimal deformations by itself
suggests the influence of the compressive pre-stress on shear
crack growth. To lend some quantitative aspect to this observa-
tion, nondimensionalized rotationaky) and dilatational ¢,)
speeds defined i(81b) are given in Table 1 for various values of
e=o/u<0 and Poisson’s ratioo=(0,1/4,1/3,1/2). In Table 2,
values of the nondimensionalized Rayleigh spegg @defined in
(39) are given. As already noted, the compressible neo-Hookean
model preserves as a limit case the small-strain incompressibility
that occurs when=1/2, soc, is unbounded at this value. Both

Table 2 Dimensionless Rayleigh speeds for different pre-
stress levels

olp cg (»=0) cr (v=1/4) cg (v=1/3) cg (v=1/2)
-1.0 1.1623 1.1901 1.1984 1.2124
-0.5 1.0114 1.0481 1.0588 1.0773
-0.3 0.9543 0.9947 1.0063 1.0266
-0.1 0.9001 0.9373 0.9568 0.9785
—0.05 0.887 0.9315 0.9444 0.9668

0 0.874 0.9194 0.9325 0.9553
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tables show that all three speeds increase with both compressivéable 4 (a) Ratio of energy release rates when c=c_>v2
pre-stress level and Poisson’s ratio. The Rayleigh speed increases

imply that subsonic planar nonbranching crack growth can occur 7’# c- r(v=1/4) r(v=1/3) r(v=112)
at higher rates under compressive pre-stress. -1.0 1.4954 0.6625 0.7601 0.9457
While the effects are small in Tables 1 and 2 for pre-stress—0.5 1.4358 0.7791 0.8559 0.985
levels that would be considered criticdl7]) in a linear elastic =~ %-ﬁzi 0-3475 0-902% 0.9945
—0i % of the 0 415 0.7395 0.96 0.9993
body,e.g, cg for v=0 increases from 0.874 to 0.887 at 5% ~0.05 1.4144 0.9683 09818 0.9998

shear modulus, they are, nonetheless, clear-cut.
For insight into fracture mechanics, we examine the dimension-

less ratio Table 4 (b) Ratio of energy release rates when c=c >v2
. E, (59) olu c, r(v=1/4) r(v=1/3) r(v=1/2)
E, -1.0 1.799 1.8341 1.8927 2.0583
. . —05 1.6006 1.3518 1.3769 1.4494
of the release rate when pre-stress is present to the rate when it iso.3 1.5239 1.1901 1.2102 1.2512
absent p=1). For allowable (6<c<cg) subsonic crack growth, —0.1 1.45 1.0607 1.065 1.0779
(53) governs and, as already noted, friction enhances this rate. To9-0° 1.432 1.0247 1.0319 1.0382

focus on pre-stress, we set=0 so thatr now depends only on
(w,c), i.e, (o,v). Tables Ba—d) give r for Poisson’s ratiov
=(0,1/4,1/3,1/2) for values ot at different compressive pre-
stress levels. The-values are sub-Rayleigh for all the pre-
stresses. At low subsonic crack speeds, the release rate is ge
ally greater (>1) when compressive pre-stress is accounted f
For speeds near the Rayleigh levélable 1, however, pre-stress
actually decreases € 1) the release rate.

In the transonic case§54) governs, and62) with y=0 must
Qp be interpreted as a ratio of rates at different crack speeds.
psight is still possible: Tables(d,b) give r for v=(1/4,1/3,1/2)
or (54) and the limit cased=1,c=v2) and various compressive
pre-stresses. The release rates for the lower crack speed ()
are seen to be less than the limit case rates. The highec ()
speed release rates, however, exceed them. In both tables, the
pre-stress effect generally increases with

Table 3 (a) Ratio of energy release rates with no friction and The casev=0 is somewhat different: In view afL8)—(20) and
o/p=—1.0 (22), (54) blows up whenw=1, v=0. That is, the single transonic
crack speed in linear isotropic soliil]) is associated with an
c r(»=0) r(v=1/4) r(v=113) r(v=1/2)  unbounded energy release rate. Ferd<1(c<0), (54b) gives
0.05 1.2608 0.9726 1.0226 1.1707 the same result, i.e., the higher transonic crack speed( ) has
0.1 1.2587 0.9711 1.0215 1.17 an unbounded release rate whes 0. However, whenv=0 in
0.3 1.2339 0.9548 1.008 11615  (54a),
0.5 1.173 0.9121 0.9724 1.1383
0.7 1.63 0.7927 0.8749 1.0699 . “ s 2
0.9 0.4551 0.2036 0.354 0.6731 Pe —on-Lu —2ymﬁ> (c=c). (60)
v, o L
Table 3 (b) Ratio of energy release rates with no friction and In this case, the compressive pre-stress allows a finite energy re-
o/p=—0.5 lease rate.
c r(v=0) r(v=1/4) r(v=1/3) r(v=1/2) Some Observations
0.05 11612 0.9926 1.0213 1.1063 This article considered dynamic fracture under shear of an un-
8:% Hggg 8:32;2 i:gig? i:%ggl bounded isotropic compressible neo-Hookean material initially
05 1.0833 0.9558 0.9923 1.0905 Subjected to a uniform compressive pre-stress. The material repli-
0.7 0.9573 0.875 0.927 1.0504 cated linear isotropic response at small deformations, but pre-
0.9 0.4398 0.2658 0.4323 0.7259  served as a limit case for all deformations the incompressibility

that arises in the linear case when Poisson’s ratiol/2. The
crack was semi-infinite, and fracture-driven by shear forces mov-

Table 3 (c) Ratio of energy release rates with no friction and . .
© 9y ing at a constant speed on both surfaces. A dynamic steady-state

o/p=-—0.1 '
® and plane strain were assumed, so that the crack edge moved at
c r(v=0) r(v=1/4) r(v=1/3) r(v=1/2) the same speed, with the forces at a fixed distance from the edge.
0.05 1036 0.9997 10058 Toxaa . '_I'he problem was t_reated_as the superp05|t|omesfsentlally '
0.1 1.0342 0.9994 1.0057 1.0243  infinitesimal deformations triggered by fracture upon the finite
0.3 1.0129 0.9974 1.0041 1.0237  deformations due to the compressive pre-stress. Exact analytical
0.5 0.9618 0.9911 0.9994 1.0215  solutions were obtained for both fields. The infinitesimal results
0.7 0.8488 0.9683 0.9821 1.0123 displayed the expected anisotropy induced by pre-stress, and were
0.9 0.4183 0.534 0.7011 0.8789 : . .
valid for any constant crack/load speed—subsonic, transonic, su-
personic. These speed ranges varied with pre-stress: the rotational
Table 3 (d) Ratio of energy release rates with no friction and and dilatational speeds, as well as the Rayleigh speed, increased
o/ p=—0.05 from their classical values. A smooth crack surface was treated in
detail, and the corresponding results for a finite zone of Coulomb
¢ r(v=0) r(v=1/4) r(v=1/3) r(v=172) sliding friction at the crack edge were obtained by simple quadra-
0.05 1.0178 0.9999 1.003 1.0123 ture. These two cases showed that friction enhances the fracture
0.1 1.016 0.9998 1.003 1.0123 energy release rate.
0.3 0.9948 0.9988 1.0022 1.012 i i i
05 09437 0.9956 09998 10109 ~ For _subson_lc crack growt_h, _the Rayleigh speed served, as |n_the
07 0.8319 0.9836 0.9907 10061 linear isotropic case, as a limiting speed for planar nonbranching
0.9 0.4176 0.6792 0.8118 0.929 shear crack growth. To examine the effects of pre-stress, friction

was neglected, and ratios of energy release rates with and in the
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On an Elastic Circular
Inhomogeneity With Imperfect
Interface in Antiplane Shear

P. Schiavone

Department of Mechanical Engineering, We develop a rigorous solution to the antiplane problem of a circular inhomogeneity
University of Alberta, embedded within an infinite isotropic elastic medium (matrix) under the assumption of
Edmonton, AB T6G 2G8 nonuniform remote loading. The bonding at the inhomogeneity/matrix interface is as-

Canada sumed to be homogeneously imperfect. We examine both the case of a single circular

inhomogeneity and the more general case of a three-phase circular inhomogeneity. Gen-
eral expressions for the corresponding complex potentials are derived explicitly in both
the inhomogeneity and in the surrounding matrix. The analysis is based on complex
variable methods. The solutions obtained demonstrate the effect of the prescribed non-
uniform remote loading on the stress field within the inhomogeneity. Specific solutions are
derived in closed form which are verified by comparison with existing solutions.
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1 Introduction proximated by a polynomial. This result applies here since, in
c[[)ractice, the matrix is a bounded domain with the remote loading

Problems involving elastic inhomogeneities with imperfe Lorresponding to the exteridto the inhomogeneityfield some
bonding at the inhomogeneity/matrix interfa@enperfect inter- . Sp 9 . mog :
relatively large” distance from the inhomogeneity. Conse-

face are receiving an increasing amount of attention in the litera- A X i
ture (see, for example, Ru and Schiavofd for an extensive quently, the remote loading is always prescribed in a bounded
literature review. Interest in these problems is motivated mainl
by a desire to study interface damage in composftasexample,

domain even though, mathematically, this is usually modeled as
%in inhomogeneity/infinite matrix system with remote loading pre-

debonding, sliding, and/or cracking across an inteif its scribed “at infinity.” Hence, the results in this paper will allow for
9, 9. 9 the approximate calculation of stress fields corresponding to a

subsequent effect on the effective properties of composites. ibed " loadi h ized b
One of the more widely used models of an imperfect interfa gescribed non-uniform remote loading characterized by any con-

(often referred to as the homogeneously imperfect inteyface Hnuous, yet otherwisg afbi”f?‘fy_l function in the presence of an
based on the assumption that tractions are continuous but dpgperfectlnhomogenelty-matrlx interface.

; : . _>Applications of the results in this paper are numerous. For ex-
placements are discontinuous across the interface. More premseel)y'),pﬁg the single inhomogeneity/maQer() model with imperfect in-

jumps in the displacement components are assumed to be propor; : . ; :
Jtiongl (in terms Fc))f “spring-facto?—type" interface paramet}em? F?e_n‘ace can be used to predict the mechanical properties of fibre-
%l_nforced compositegsee, for example, Hashif2], Jun and

their respective interface traction components. Under these . S .

sumptions, Hashif2] has examined the case of a spherical inho_uoscliill([iz]’alasnodO?a?[es;]t).ithgfetsI:riene-cpohrasf)s?tlgsrtrllcecl:ﬁg(r)]rizggIe:r;?teyx-
mogeneity imperfectly bonded to a three-dimensional matrix. THe ple, it arises dqirectly from the studF;/ of the interphaée layer
analogous problem for plane deformations has been investiga Shween the inhomogeneity and its surrounding matrix and it of-

by Gao[3]. In both these cases, the remote loading is assumedé ! . .
be uniform. This assumption allows the authors to draw diref fs the fundamental solution for the generalized self-consistent

comparisons between their results and the classical results deri@?hod(see, for example, Christensen and[8 Luo and Weng

- 19], Hashin[10], and Jun and JusiuK7]). In addition, in the
for analogous problems under the perfect bonding assumpti . . ; . .
(see, for example, Eshelli¢,5] and Ru and Schiavoré]). uclear industry, various fuels and claddings have oxide coatings

In this paper we derive rigorous solutions of the problem asséz_lrconlum oxide on Zirconipand often the oxide coatings can be

. . . I . L bjected to cracking from residual or imposed stresses. Similar-
ciated with a circular elastic inhomogeneity embedded within ay’ the design of fuel cells may involve the use of Yttria-

infinite matrix in antiplane shear when the interface is homoges

neously imperfect, under the more general assumption of nonu gﬁogwrggﬁédezlgyegﬁiim 2?%25;?:&212 @ﬂﬂiff@gé’}g%oge'
form remote loading. Specifically, we consider the case in whi y Y p P

the remote loading is an arbitrary-order polynomial in the co ree-phase inhomogeneity problens an appropriate starting

plex variable describing the matrix. The solution of this problerRS'r?ér:?imgrg:trriﬁsgfggr'iré%ln;ﬁCTr?géCr;l air;alﬁits 'rggt:é(&:gnplaesgf_
is extremely important in that, essentially, it leads to the solutiof} 9 9 P

N . ted interconnects in large scale integrated cirosié® Okaba-
of the case where the remote loading is characterized by any cé!ﬁshi[m). Here, the major cause of voiding and failure has been

tinuous, yet otherwise arbitrary function of the complex variablg tributed to the residual stresses induced within the interconnect

in the matrix. This statement is based on the well-known res thermal mismatch between the line and the surrounding passi-
from the theory of functiongWeierstrasswhich states that any y ! ! W In€ urrounding passi
ation and substrate. In this case, an inhomogeneity-matrix model

continuous function in a bounded domain can be uniformly ap- . .
y eéan be used to model the interconnese, for example, Niwa

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF et al.[12]). . . .
MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLIEDME-  The formulation of the basic boundary value problem describ-
CHANICS. Manuscript received by the Applied Mechanics Division, June 20, 200ing the antiplane deformation of an elastic inhomogeneity with
final revision, November 19, 2001. Associate Editor: H. Gao. Discussion on tmﬁ)mogeneougy imperfect interface is presented in Section 2. The
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, DepEf:e of a single circular inhomogeneity is discussed in Section 3
ment of Mechanics and Environmental Engineering, University of California—San . ! . !
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months aféele, We find closed-form solutions which demonstrate the effect
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  Of the nonuniform remote loading on the stress field within the
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inhomogeneity. In the special case when the remote loadingDenote byv;(x,y) the harmonic functions conjugate tp(x,y).
assumed to be uniform, we reproduce the result first presentedSimce the external loading is self-equilibrateg(x,y) are single-

Ru and Schiavongl], which reports a uniform stress field insidevalued and uniquely determined to within an integration constant
the inhomogeneity, despite the presence of the imperfect interfaaad the corresponding complex potentiglg(z) and ¢,(z) are

In Section 4, we derive closed-form solutions for the analogouanalytic withinS; andS,, respectively. Thus,

but more general, case involving a three-phase circular inhomo-

geneity. These simple results are significant in that they establi%,(z): (2 + di(2)
in the presence of a homogeneously imperfect interfdiect ' : :

o ioE=pid{(2), ze§(i=12).

2.3
relationships between the stress field inside the inhomogeneity (2:3)
and the prescribed nonuniform remote loading. Noting that
2 Formulation A, , -
2—=¢y(2)€" D+ pi(2)e "D, zel (2.9)

Consider a domain i?, infinite in extent, containing a single an
internal elastic inhomogeneity, with elastic properties differe%hereem(z) representsin complex form the outward normal t&
from the surrounding matrix. The linearly elastic materials oCCUs "4 boundary value probleii2.2) can be written in the fol-
pying the matrix and the inhomogeneity are assumed to be horrl‘(?\iving form: ’
geneous and isotropic with associated shear maduland w,, '
respectively. At infinity, the prescribed deformation is such that N . _—
the elastic antiplane deformatiar{x,y) in the matrix satisfies $1(2)=8¢5(2) + (1 8) dy(2) + o p5(2)€™ P+ p5(z)e”"?)]

u(x,y)=RePy(2)+0(1), |7=x2+y?=», N=1,2,..., Tut(z), zel (2.5)

where Py (2)==N_oa,z", the a, are given complex constants $1(2)=PR(2)+0(1), |z]—.
(remote stress parametgréx, y) is a generic point ifi? and z
=x+iy e C. We represent the matrix by the dome#q and as-
sume that the inhomogeneity occupies a circular re@gmvith 1

center at the origin and radil®s The inhomogeneity-matrix inter- = 220 5= Hitha U* = wZ+ 0z 2.6
face will be denoted by the cun&. In what follows, the sub- “=2 ' 2uy 27 werw 26

scgpts 1 and 2_ vinllzref.eilr;o thte ;ﬁg'orlsi tgand ?2[ resge]?tlvely, and w is a known(complex constant determined by the uniform
?n U({(tXh-Y). a=L W S enote i.e?s iGantiplang deforma- eigenstrain given in the circular inhomogeneity. Without loss of
ion at the point(x, y) in S,, respectively. enerality, we have assumed that the origin of coordinates has

It is assumed that the circular inhomogeneity is imperfectl —-—— : P
bonded to the matrix alonf by the “spring-layer type” interface Zgreon chosen such that the rigid-body displacement at infinity is

referred to in Section 1. The interface conditionlois therefore
given by

Here

3 Single Circular Inhomogeneity With
ou, ouy Homogeneously Imperfect Interface

Blup—(Uptu*)]=po—==py— =, on I (2.1)  cConsider then, a single circular inhomogeneity with homoge-
neously imperfect interface characterized by the paramei@er

wheren is the outward unit normal tb, g is the imperfect inter- g). In this case, we have
face parameter and* (x,y) represents the additional displace- _
ment induced within the inhomogeneity by a unifo(stress-freg Ré"@=z, zeT
eigenstrain specified below. In accordance with HagRih we
note that if 3=0, the condition(2.1) reduces to the case of a
traction-free interface while i is infinite, (2.1) corresponds to a 5 o —
perfectly bonded interface. Consequently, the following boundary b1(2)+(6— 1)¢T( R_) _QEW( R_) _ ERZ
value problem describes the antiplane deformation of a circular 1 2l z z?
inhomogeneity with imperfect interface of the forf2.1) (see Ru
and Schiavon¢6]).

so that the interface conditiof2.5) can be written as

z
=5¢2(Z)+a§¢é(z)+wz, zel. (3.1)
V2u;=0 in S,
SinceS$; is a circular region, by symmetric continuati¢see, for

2 _ .
V=0 in 5 example, England13]), $,(R%/z) and ¢;5(R?/z) are analytic in
S, . Consequently, the right-hand side(8f1) is analytic inS, and
o &Jr . oup - dup I the left-hand side of3.1) is analytic inS;, except at infinity
Blur—Uz)=p, on TR (xy),  ma oan Mgy On where the left-hand side @8.1) has the asymptotic behavior
2.2) ) o
PR(2)+(8—1)$,(0), |z]—ce.
ui(x,y)=ReP(2)+0(1), x*+y?—o Define the functiorf(z) as follows:
|
z
f1(2)25¢z(2)+a§¢§(2)+w2, Ze S,
f(z)=< f1(2)=Tx(2), zel,
—(R? R—(R? o
f2(2)= (D) +(0-1)y| |~ b2\ |~ 7R ZeS,.
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It is clear thatf(z) is entire in the domaiD=S,UI'US, f(2)=PE(2)+(5— 1)@
(which does not include the point at infinjtylt follows from ’
Liouville’s theorem and the asymptotic behavior bf(z) that or
f(2)=P{(2) +(6—1)$,(0), ze D. In particular,

ZESl

—[R? R—(R? o .
, ¢>1(z>=<175>¢2(7) +a;¢5(7) + 5 R+PU)
0ha(2) ta g $x(2)+0z=P{(2)+(6-1)$(0), z€S,.
+(6-1)$,(0), zeS;. (3.4)
It should be noted that3.2) and (3.4) can also be derived using
the method of series.

Solving this first-order ordinary differential equation ¢y and
using the notationﬁ(z’\') to denote the stress functiapy, for each
N=1,2,3...,leads to

Ny, O~ 1fag(o— 1)+ayd Zw
¢2(2) 8 256—1 5@ 4 A Three-Phase Circular Inhomogeneity
* R The results obtained in Section 3 for a single circular inhomo-
. - geneity are easily extended to the case of a three-phase circular
N R D (-1)'z d'Py(2) inhomogeneity with homogeneously imperfect interface leading to
a’h (SR SR dz ze a much stronger resulfThe solution of the three-phase elastic
(7)"'(7+I) inhomogeneity problem provides the “fundamental solution” for
the generalized self-consistent meth@ee, for example, Chris-
(3.2) tensen and L¢8] Luo and Wend 9], Hashin[10], and Jun and
_ Jusiuk[7]) in the mechanics of composite materjalo see this,
_0-llag(6—1)+as| zw consider the following.
TS 26—-1 a Suppose there is an intermediate annular re§@gfwith shear
o+ R modulusu and outer radiufk;) between the circular regio8,
and the matrixS,. Assume that, is perfectly bonded t&; but
RN (—1)iz N-i imperfectly bonded t, with interface parameteg. Define the
+ o ;} ﬁ ﬁﬁ 2 an-—j following quantities:
a a _ o 1 _Motme 1 B
(N=j)! = o 20 T g T2 T @D
X(N_J'—_i)gZN o The corresponding antiplane problem requires that we find three

analytic functions¢;(z)(i=0,1,2) in the domainsS;, respec-
which demonstrates the variation of the stress func{é@‘? (and tively, satisfying the following conditions:
hence, through2.3), the stress fieldinside the inhomogeneity

with the prescribed remote loading of ordérMore precisely, the bo(2)=8:11(2)+ (1= 61)hy(2), |2|=Ry
1) s the prescribed remote ading. - e et —— fz, R
For examgle, in the cadé=1 (whichg,].from (2.3), corresponds $o(2)=02$2(2) + (1= 52) $2(2) + o g b2(2) + 7 $2(2)
to uniform remote loading we obtain “ur, |24=R @.2)
o= 220D B2 s, @) i(D=P(@D+o(1), |2,
o+ R To solve this problem, let

which, from (2.3), agrees with the result established in Ru and Y - ~ -

Schiavone[1] that the stress field inside the inhomogeneity is h1(D=P{(2D)+ D, X2 ™", a(2)=Yo+ D, Yo2Z" (4.3)

uniform. (The author notes that the result in Ru and Schiajahe n=t n=t

mistakenly omits the contribution of the constaptto ¢$(z). whereX,, Y, (n=1,2--) andY, are complex coefficients to be

This, however, does not affect the expression for the stress fieletermined. From the first interface conditié4.2), we obtain

inside the inhomogeneityThis result is in sharp contrast to the¢y(z) in terms of$,(z) as follows:

results obtained by Hash(2] and Gad 3] for the corresponding

problems in three-dimensional and plane elasticity, respectively,

where, in each case, it was shown that, in the case of a homoge- bo(2)= 61

neously imperfect interface, under the assumption of uniform re-

mote loading, the stress field inside the inhomogeneity is honuni-

form. +(1-61)
In the caseN=2 (which, from (2.3) corresponds to linear re-

mote loading, we obtain from(3.2) that

PL(2)+ >, Xpz "
n=1

_ (R & X2
o R + L
PN( z nZl R{"

Substituting(4.3) and (4.4) into the second interface condition
(4.2), and equating coefficients of like powers nfthe coeffi-

(4.4)

R
$52(2)= ¢(21>(Z)+3222T, zeS,, cientsX,, andY, are found to be
a5 t2 (=8
d18p+(1—d1)ap— 5 [ 6180+ (1~ 1)ao]

which corresponds to a linear stress field inside the inhomogene- Y,= (12 57 ,

ity. %

The stress field in the surrounding matBx can be calculated % 8,
for any value ofN from the equation (4.5)

Journal of Applied Mechanics SEPTEMBER 2002, Vol. 69 / 673



5.,
1—;n[(1752)R2”+anR2”’1]7(1751)EHR§”
) _52+F
n 5 (1-6) [(1— 5,)R*"+ anR?" 1] :
! R2" St an
2R
(4.6)
Xi
Y= 51an+(1—51)@ , h=2,...N,
St — !
R
4.7)
X,=Y,=0, n>N. (4.8)

The remaining two nonzero constagsandY, are determined

by the equations:
a

R

X
Sray+ (1= 8y) 3 =| 5+
1

Yitow

81X+ (1— 8))R%a,=[(1— 8,)R+ a]Y,;R+R%.

The stress functiong,, ¢, and¢, are now determined from

(4.9)

which is the result first presented in Ru and Schiavfdhigi.e.,
that the stress field inside a three-phase circular inhomogeneity
with homogeneously imperfect interface is uniform. Note that

(4.10 reduces tap, obtained from(3.3) when §;=1.
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Radiation Loading of a Cylindrical
Source in a Fluid-Filled
Cvlindrical Cavity Embedded
Within a Fluid-Saturated
Poroelastic Medium

S. M. Hasheminejad

Assistant Professor

e-mail: hashemi@iust.ac.ir Radiation loading on a vibrating structure is best described through its radiation imped-
ance. In the present work the modal acoustic radiation impedance load on an infinitely
H. Hosseini long cylindrical source harmonically excited in circumferentially periodic (axially inde-
Graduate Student pendent) spatial pattern, while positioned concentrically within a fluid cylinder, which is
embedded in a fluid-saturated unbounded elastic porous medium, is computed. This con-
Department of Mechanical Engineering, figuration, which is a realistic idealization of an acoustic logging tool suspended in a
Iran University of Science and Technology, fluid-filled borehole within a permeable surrounding formation (White, J. E., 1983, Un-
Narmak, Tehran 16844, Iran derground Sound Application of Seismic Waves, Elsevier, Amsterdam, Fig. 5.29, p. 183), is

of practical importance with a multitude of possible applications in seismo-acoustics and
noise control engineering. The formulation utilizes the Biot phenomenological model to
represent the behavior of the sound in the porous, fluid-saturated, macroscopically homo-
geneous and isotropic surrounding medium. Employing the appropriate wave-harmonic
field expansions and the pertinent boundary conditions for the given boundary configu-
ration, a closed-form solution in the form of an infinite series is developed and the
resistive and reactive components of modal radiation impedances are determined. A nu-
merical example for a cylindrical surface excited in vibrational modes of various order,
immersed in a water-filled cavity which is embedded within a water-saturated Ridgefield
sandstone environment, is presented and several limiting cases are examined. Effects of
porosity, frame stiffness, source size, and the interface permeability condition on the
impedance values are presented and discusge@l: 10.1115/1.1488664

1 Introduction tational (compressionalwaves along with one rotationé&heay

o . . ave. Biot's treatment agrees well with Gassmann’s results in the
There has been a progressing interest in acoustics of fIU| w-frequency rangé5]

sature_lted porous media_ due to its important applications in_ vario_uq;Or many years following the development of the Biot theory of
technical and engineering processes. In particular there is an iy amic poroelasticity the existence of the Biot slow compres-
creasing demand in studying the propagation, attenuation, and djgnal (type 1) wave remained the most controversial of its pre-
persion of elastic waves in granular media such as rock formatiogigtions within the seismology and underwater acoustics commu-
in petroleum reservoirs, ocean bed sedimentary layers, souRgles. Recently the scientific groundwork for Biot's model has
absorbing(impedancg ground, and in fibrous medium such aseen more firmly established through several experimental valida-
biological tissues, polymer networks, and sound-absorbing matfns of its most fundamental predictions, leading to a renewed
rials. Gassman[t] presented the first concise model for harmoniinterest in the subject. The first clear experimental observation of
plane wave propagation in an infinite fluid-saturated porous solithe slow bulk waves was reported by Pldéa He detected Biot’s

His work is considered to be the first major breakthrough in prelow wave under controlled experimental conditions in consoli-
dicting the elastic moduli of porous media at low frequencieslated porous media consisting of lightly fused glass béadii-
Gassmann’s treatment, however, disregarded the relative viscei@ rock) saturated with water. Subsequently Berrynidhquan-
fluid/elastic solid motion which is known to be the main cause ditatively analyzed and confirmed Plona’s observations and
energy loss in the high-frequency regime. Approaching the proboncluded that Biot's model provides the appropriate basic frame-
lem in a more unified manner, Big2—4] extended Gassman’'s Work for analysis of general two-component effective-medium
work and developed a straightforward and efficient two-pha§¥stems. Similarly, a rigorous microscale-based asymptotic analy-
theory for wave propagation, addressing such issues as w&l@ by Burridge and Kellef8] has also confirmed the validity of

speed, attenuation, dispersion, and anisotropy. He formulated Bi€t'S equations under the proper set of assumptions. Further ex-

appropriate constitutive equations and equations of motion in erllrgegtal vlalfldatlonlslare %C}C(O?;pllsh%dé)y Vaﬁ d;;(l-}rlnaentet al.

roelastic media and predicted the existence of two types of dils 10 Rasolofosaofil1], and Kelder and Smeuldef2,13. Jus
recently, Gurevich, Kelder, and Smeuld¢isg!] performed accu-

" Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF rate dynaml_c numer.lcal mOd.elmg ‘f"”d simulation of three success-

MECHANICAL ENGINEERSfor publication in the ASME OURNAL oF AppLiEDME-  fUl Ultrasonic experiments, in which the type Il wave was ob-

CHANICS. Manuscript received by the Applied Mechanics Division, July 12, 20005erved, to gain insight into the problem and further substantiate

final revision, June 22, 2001. Associate Editor: D. A. Siginer. Discussion on the paggje validity of the Biot dynamic theory of poroelasticity.

should pe addressedl to the Editor, P_rof. prert M_. McMeekmg, Qhal'r, Department °fWhen an interface separates a saturated porous medium from a

Mechanics and Environmental Engineering, University of California—Santa Bar- . . ",

bara, Santa Barbara, CA 93106-5070, and will be accepted until four months afegcond medlum, th_e question of the boundary cor_ldltlons_ needs to

final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  be examined. The interface conditions relate the field variables on
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both sides of a surface of discontinuity in the material properti¢2oterasy38] investigated dynamic coupling effects for a pulsat-
that are involved in the coefficients appearing in Biot's equationimg source in a fluid-filled cavity embedded within @deal) elas-
The appropriate set of boundary conditions that are sufficient tic infinite media by the boundary element method. In doing this,
produce a unigue solution to Biot's equations of motion when armowever, he made the unrealistic assumption for the surrounding
interface separates two poroelastic media was originally derivéatmation to be nonpermeable. The principal objective of present
by Deresiewicz and Skalakl5]. Many researchers have em-paper is to employ Biot's theory of wave propagation in fluid-
ployed these conditions to produce the solution to Biot's equatiofgturated poroelastic media to determine the radiation loading on
of motion for various scattering problems involving piecewise ha cylindrical source undergoing circumferentially periodic har-
mogeneous porous materials such as layered poroelastic medianic vibrations in a fluid-filled cylindrical cavity embedded
and porous media with inclusions. A proof of these conditions ofithin a poroelastic environment.
the basis of Hamilton’s principle is given in the monograph bg . . )
Bourbie et al[16]. Governing Field Equations

While most research studies involve reflection and transmissiongefore proceeding to analyze the full problem, we shall first
from a planar interface, comparatively little work has been dongiefly review salient features of Biot's dynamic theory of po-
on acoustic scattering or radiation fraimoundedl convex-shaped roelasticity. On a microscopic scale, sound propagation in porous
inclusions within a fluid-saturated porous medium. Applying @naterials is generally difficult to study due to the complicated
boundary layer approximation, Mei et all7] studied acoustic geometries of the frames. In the Biot model the medium is taken
scattering by a fluid-filled circular cavity within a fluid-infiltratedto be a macroscopically homogeneous and isotropic two-
poroelastic medium. Berrymai8] and Zimmermar{19] have component solid/fluid system. It is therefore described in terms of
each employed a distinct analytical method to examine scatteriageraged parameters. The averaging is performed on a macro-
of plane compressional waves by a spherical inclusion in an infieopic scale, on volumes with dimensions sufficiently large for the
nite poroelastic medium. Zimmerman and Stg?0] developed average to be significant. Denoting the average macroscopic dis-
closed-form solutions to several basic problems of harmonic wap&cement of the solid frame and the saturating fluid on the el-
propagation in a poroelastic medium including radiation from ementary macroscopic volum{&MYV) by the vectorsu and U,
harmonically pulsating impermeable spherical inclusion, and scagspectively, the macroscopic stress tensgrand the mean pore
tering of a plane compressional wave by a poroelastic spheri¢aiid pressurep, are given by([16])
inhomogeneity. Kargl and Lini21] and Lim[22] formulated the _
scattering problem using a transition matrix approach and pre- 7ij = (\e=BME) 3 + 2 €y

sented some numerical results for the case of scatter by a spherical pp=M(&—Be) @
poroelastic inclusion. Linj23] developed a transition-matrix for-

mulation of the field scattered by a bounded three-dimensiort4{'®'®

object in a horizontally plane-stratified poroelastic environment.

He numerically implemented his proposed exact solution for an N=Ks— K

aluminum sphere buried in an ocean sediment half-space and in-

sonified by an[ ac]oustic source in an overlying water half-space. « bo( 1K= 1K) + LK — 1K,

Gurevich et al[24] developed a quantitative model for interaction = — —

of an incident plane elastic compressional wave with a poroelastic bo/Ko( 1K= 1K) + 1K (1K= 1Ko)
ellipsoidal inclusion embedded within a fluid-saturated porous M=1/((B— ¢o)/Ks+ do/Ks))

elastic medium employing the Born approximation. They obtained

relatively simple explicit analytical expressions for a number of B=1-Ko/Ksg (2
common cases under the main assumption of low contrast of in- e =(u +u )2

clusion’s properties relative to the host medium. The transient g L

response of radially pressurized cylindrical cavity within an un- E=—V.w=—¢y(e—€)

bounded fluid-saturated porous medium has been considered by

Senjuntichai and Rajapak$@5]. Employing Biot's equations of e=V-u, &=V-U

poroelastodynamics, they obtained time-domain solutions for fi@g-which  is the shear modulus of the bare skeletal fraggjs

dial displacements, stresses, pore pressure, and discharge by difgChore volume fractiofporosity), K, is the bulk modulus of the

inversion of Laplace domain solutions using an appropriate nyry skeleton(i.e., for the “open” systemp,=0), K is the bulk

merical scheme. Qi and Ged26] presented the first formulation modulus of the material constituting the elastic matKy, is the

of singly and doubly asymptotic approximatiot®AAs) for a puylk modulus of the saturating fluié; is the bulk modulus of the

poroelastic medium. They found good agreement of DAAs witkgjosed” system, andv= ¢o(U—u) is the filtration displacement

the exact solution by examining the surface response of a stgpctor.

pressurized spherical shell and spherical cavity embedded in arFollowing the standard methods of continuum mechanics the

infinite poroelastic medium. The more related problem of radigontinua are described by sets of coupled balance equations with

tion loading on a spherical source freely suspended in a fluid-fille@iditional terms corresponding to the interaction between phases.

spherical cavity embedded within a fluid-infiltrated elastic poroysccordingly, the equations of motiofinear momentum balange

medium has lately been tackled by Hashemingd. governing the displacements of the solid matrix and interstitial
Problems corresponding to sources immersed in fluid neariguid with dissipation taken into account are written (B6])

permeable interface are of great practical importance with a mul- ) . o

titude of possible applications in technical fields, such as seismfi¢ T 21)VV-U+QVV-U—uVXVXu=pu+pU+b(u—U)

prospecting, ocean acoustics, atmospheric acoustics, and noise 3)

control engineering. In particular, theoretical and experimental ) e T

studies on the prediction of an acoustic field of a multipole source QVV-U+RVV-U=pili+ppU=b(u=U)

near a finite impedance surface are of fundamental interestvitiere

mentioned field$[28—-36). Representing an acoustic logging tool _ _ 1

as a uniform circular cylinder of unlimited length suspended in a A=Nit doM(do=268)  p=(1=o)pst dopr
fluid-filled cylindrical cavity leads to an idealized model which Q=¢M(B— o) pr=p+ dopn(a—2)

may be looked as the starting point for a more realistic description ) 4)
of the problem ([5,37]). Employing the above embodiment, R=¢gM  p1o=dopr(l—a)
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P22=P— P11~ 2p12= A bopri Substituting the above resolutions into Biots’ field equations of
motion (3), we obtain two sets of coupled equatidhereafter we
in which p, is the density of solid matrix material in a consoli-shall assume harmonic time variations wigh!** dependence
dated nonporous statgy, is the density of saturating fluig,is the  suppressed for simplicily
total mass density of fluid-saturated material, and the effective

2_ 2.
densitiespyy, p12, P20, Which describe the combined effects of A2p Q {Vzd’ _|pueTieb  protjeb [‘75} ®)
viscous and inertial drag, are frequency-independent parameters Q R|LV X prow’+jwb  prw’—jwb|l X
relying on the geometry of the porous medium and the density of 5 s o

the saturating fluid. The parameterthe tortuosity(structure fac- Y {V lﬂ}f pro°—jwb  pp tjebily 9
tor) of the porous medium, was originally introduced into the o oll 0| prow’+job  pypw?—jwb||©] ©)

theory of acoustical materials by Zwikker and Kosfaa]. It is an , .
intrinsic geometrical property related to variations in pore shapesYSing standard methods of wave analysis, the above systems
and orientations. The structure factor is equal to unity if the por83y be manipulated to yield the Helmholtz equatidris)):

are straight and uniform and increases as the pores become irregu- V24, o+ K2 b =0
larly constricted and more tortuouge., as they deviate more s hsThs (20)
from the direction of wave propagatipiThe quantityb(w) is a VZ2y+kiy=0

viscous coupling factor that accounts for the combined effects of . .
macroscopic frictional dissipation due to finite fluid viscogitis- Whereks, Ks, andk; which designate the complex wave numbers

cous drag forcesand the interaction between the fluid and soli@f the fast compressional, slow compressional, and the elastic
movementginertial forces. A common functional form fob(w), ~Shear waves, respectively, are given as

based on heuristic arguments, is given(@9)]) B¥ VBZ—4AC 1o
2 _ 2_
2 ki o= 2A ki u(prw?+jwb) (1)
W
b=——F(w) () where

. . o . A=(\+2u)R-Q?
wherey is the saturating fluid viscosity, andis the absolutedc)
permeability of the porous medium. Here the quanfifyy/x cor-  B=w’[p1iR+pas(A+2u) —2p1 Q] +jwb(A +2u+2Q+R)
responds to a frictional drag coefficient derived assuming Poi- (12)
seuille(laminar and incompressibl@ow of a saturating fluid past o o > .
the lattice walls at low frequencies. At higher frequencies the C=wl o (pupz2—pir) +]wpbl.
complexity of the pore geometry cannot properly be accounted forEmploying Eqs(8) through(11), with some manipulations, the
by the “static” permeability alone and théynamig viscosity scalar potentialg, x, ®, andy may be expressed as
correction factoF (w) is introduced to correct for deviations from
the Poiseuille flow(so that, naturallyFF(0)=1). Biot [3] treated =it ds
the pore space as an ensemble of straight circular channels and _
studied viscous parallel fluid flow under an oscillatory pressure X=widit psds (13)
gradient. He developed expressions Fdw) for cylindrical and O=ayy
flat side pores in terms of fluid viscosity and pore diameter. There-

after, many researchers have investigated the frequency dep®Rgre

denpe of the Biot theory in terms_ of variou_s fundamentally wz(pllR—ple)—kf s[()\+2;L)R—Q2]+jwb(Q+R)
equivalent parameter®.g., permeability, tortuosity, and viscous u; ;= > ' i

characteristic lengh In 1987, Johnson et al41] considered a ' @ (p2Q—p1R) +jwb(Q+R) (14)
network of straight channels with randomly distributed radii and ©2p1o—jwb

introduced a very simple and fairly accurate alternative model ag=— zL

(JKD mode) for description of dynamic permeability at arbitrary wpootjwb

frequencies based on energy flux consideration on the microscalerhe fluid contained in the cylindrical cavity is assumed to be

Johnson's et al. description differed slightly from Biot's modelinyiscid and ideally compressible that cannot support shear
but showed the same general behavior in the low and the higliresses making the state of stress in the fluid purely hydrostatic.
frequency limits. In the present work we shall adopt the JKIgonsequently the field equations may be expressed in terms of the

description of dynamic permeability effects. According to Johnsage|ocity potential of the cavity fluid a§42])
et al. [41], the simplest possible model fé1(w) is (please see

their Eq.(3.3) s=Vo
4Pk 172 p=—pe (15)
F(w)_[l_JnA—%] (6) V2<p+k2<p=0

) o ) wherek(= w/c) is the wave number for the dilatational wayeis
where A~ Bak/ ¢, the viscous characteristic length, is a wellthe densitys is the velocity vector, ang is the acoustic pressure
defined parameter relevant to a wide range of transport propertigsine inviscid fluid.

It depends exclusively on frame geometry and intrinsically de-
scribes the dimensions of dynamically interconnected pores
([40)).
The Helmholtz decomposition theorem allows us to resolve tie Field Expansions and Boundary Conditions

displacement fields as the superposition of longitudinal and trans—p,o geometry and the coordinate system used are depicted in

verse vector components Fig. 1, which is a close reproduction of Fig. 5.29 in R&. The
dynamics of the problem may be expressed in terms of appropri-
u=Ve+Vxy @) ate scalar potentials. The compressional waves that are trapped in
the inviscid fluid layer inside the cylindrical cavity may be ex-
U=Vyx+VXx0. pressed as
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fluid-saturamd poroelasﬂcsolld ,Y“g"; Utilizing Eqs_.(l), (13), (18), and(19), pore fluid pressure, radial

e i and tangential stress components are expressed as
o =agk? s+ ak s+ 2u(du, 1) (21)
Pp=Mbkfps+MbkZ s (22)
Org= 'u((;lg+rw u0> (23)
where
f.s= ~ N+ PoBM(1— g ) (24)
bt s= B+ dolps,s—1).

The unknown scattering coefficiens throughE,, in Egs.(16)
and (17) must be determined by the application of suitable inter-
face conditions. The only boundary condition at the cylindrical
surface(i.e., atr=a,) is the continuity of normal velocity, thus
the first of Eqs.(15) leads to

P o
7e =v=2 v,cosné (25)

wherewv,, represents the modal radial velocity amplitude of the
cylindrical surface.

Microscopically, the boundary conditions at a poroelastic inter-
face are very complicated. This is true particularly at the interface
between two poroelastic media of distinct pore size. The situation

can be simplified by averaging in a volume sense as discussed by
o= 2, [DpJa(kr)+EqHy(kr)]cosno (16) Deresiewicz and Skalakl5]. The appropriate boundary condi-
tions that have to be satisfied at the cavity wa#., atr =a,) to
yield a unique solution for the proposed problem @ded)):

Fig. 1 Problem geometry

whereJ,, are cylindrical Bessel functions, ardl, are the cylin- o ) ) o
drical Hankel functiong[43]), D, andE,, are unknown scattering 1. compatibility of normal stress in poroelastic media with the
coefficients. Similarly, the transmitte@utgoing fast dilatational acoustic pressure in the cavity fluid

wave, slow dilatational wave, and the shear wave in the poroelas- =—p (26a)

tic medium exterior to the cavity are, respectively, represented by
2. vanishing of tangential stress

©

0,4=0 (260)
1= 2, AnHq(kir)cosng - . .
n=0 3. continuity of normal component of the filtration velocity
= po(U;— ) =5~ Uy (26c)
b= E B,H,(ksr)cosne a7 4. consistency of the pressure drop and the normal component
n=0 of filtration velocity (i.e., satisfaction of Darcy’'s law which
governs the fluid flow across the interface
Ks(P— pp) (26d)

1/1:2 nC,H,(k:r)sinné. Wr
n=0 where the parametet, characterizes the permeability of the in-
terface, i.e., it describes the quality of interconnection between
Now considering the basic field equations in cylindrical cootwo media. For an open interface, we expect zero pressure drop
dinates, assuming no axial dependence, the solid and liquid dip=p,) and hence we lek;=. To characterize a sealed inter-
placements in the and 6-directions in terms of dlsplacementface(l e., forw=0) we takeKS 0. Obviously, acoustic properties
potentials in the poroelastic media dfé2]) mvolvmg the interface is expected to be highly sensitive to the
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state of the surface condition. For clarity, in the present article we Table 1
do not consider the possibility of a partially sealed boundary

Input parameter values used in Biot's model

condition. Parameter Water-Saturated Sandstone
Now the unknown scattering coefficients shall be determined i’o g'g;
by imposing the stated boundary conditions. Employing expan- x (crP) 27 7% 10-8
sions(16) and (17) in the field Eqs.(18) through(24), and sub- o (glen?) 248
stituting obtained results into the boundary conditi¢@s) and Kss(dyn/mg) 4.99x 104
(26), we obtain Ko (dyn/(r:Tr?‘r?) 5.24x 101
, , # (dyn/cn) 3.26x 101
kJi(ka;)Dp+kH\(ka))Ey=v, (27) o (%/Cn/?)mz 1.00 o
" K 2.25x1
{KE[agH q(keaz) + 2 Hy (kiag) T} Ag + (K2 asH n(K2o) ) oo
) A (cm) 19.4x1074
4 2Mn ! 1
+2uHy (k) 1} By + a kiHn(k@z) — a_Hn(kIaZ)
2 2
X Cpt{jwpJi(kay)}Dy+{jwpHy(kag) }E,=0 (28)
20l 1 2ul1 Finally, noting the structure of the vectang andu,,, we iden-
] Bl Ho(keap) — kiH/ (Keap) | | Ag+ _’“[_ H(Ksap) tify the acoustic impedance for modal vibrations of the cylindrical
ap [ap a; (A surface inside the cavity,,, as the first element of theZ” (im-
pedancg matrix ([45]). Moreover, modal acoustic impedance can
—keH/ (Ksap) | | Byt ﬁz{(—nz)Hn(ktaz)JrazktHﬁ.(ktaz) be expressed in terms of its resistive and reactive components
az as([44])
—adk?H! (kay)}Ch=0 (29) Zy(w)=pCry(w)—iwpa;m(w). (38)
{i wkiHf(Ksap)[ do(1—pr) = 11}A, 4 Numerical Results
+{j wkH/ (k@) po(1— us) —11}B, In order to illustrate the nature and general behavior of the
) solution, we consider a numerical example in this section. Real-
n-. o izing the large number of parameters involved here, no attempt is
+ [a_zj wH(kiaz)[ bo(1= o) l]] Cn made to exhaustively evaluate the effect of varying each of them.
) , The intent of the collection of data presented here is merely to
+{—kJI(kag)}Dy+{—-kH\(kaz)}E,=0  (30) illustrate the kinds of results to be expected from some represen-
. , 2 tative and physically realistic choices of values for these param-
{jodokiHN(Keaz)[1— ui]— ksMbikiH (Kiap) A, eters. From these data some trends are noted and general conclu-
r KH (Keao)[1— wd— kMbk2H . (K.a,)' B sions made about the relative importance of certain parameters.
{0 doksHn(ksa)l1~ ps] = xMbgksHn(ksaz)} By Accurate computation of cylindrical Bessel functions of com-
n?. o plex argument is a challenging task. To achieve this, FORTRAN
g ledoHn(ki@)[1-aol Cot{jwprsdn(ka)iDn  subroutines CBESH and CBESJ were first emplogfdd)). The
2_ precision of calculated values were checked against
+{jwprsHn(kay)}E,=0 (31) MATLAB (5.3 specialized math functions “besselh” and

wheren=0,1,2 . . ., except for Eq(29) wheren=1,2, .. ..

The fluctuating acoustic pressure on the surface of a vibrati
structure constitutes its radiation loading. The radiation loading o
a cylindrical surface excited in vibrational modes of various ord(lairr
(i.e., monopole, dipole, quadrupole, and multipole-like radiator
is best described through its acoustic radiation impedance. Fo

unique review on the subject one should consider R&f]. At
this point we may favorably express the system of E@S)
through(31) in matrix form as

Us=RgCy, U,=R,c, n=1 (32)
where
co=[A0.Bo.Dg,Eo]"

Uo=[v0.,0,0,0"

¢h=[An,Bn,Ch,Dy :En]T
un:[vn,O,O,O,qT.

(33)

Fluid pressure on the vibrating cylindrical surface is determin

from the second of Eqg15) and Eq.(16) as

pn(r=a;)={jwpJn(kay)}Dy+{jopHn(ka)}E,  (34)
which can also readily be put in matrix form as
Po=SoCo, Pr=S.chn N=1. (35)
Using Eqgs.(32) and(35), modal pressure may be stated as
pPo=ZoUg, Pn=Zpu, n=1 (36)
where
Zo=%Ry* Z,=S,R,! n=1. (37)

Journal of Applied Mechanics

“besselj,” and also the printed tabulations in the handbook by
Abramowitz and Stegup43]. Performing computations over a
Wde range ofcompleX arguments an¢intege)y orders on a Pen-

um personal computer, it was concluded that MATLAB results
2 e more dependable especially for large arguments and high or-
gears. Subsequently, a MATLAB code for computidg=SR ™!

was constructed to calculate modal acoustic impedance values as
functions of nondimensional frequendya, = wa;/c. Accurate
computations for derivatives of cylindrical Bessel functions of
complex argument were accomplished by utilizing Ey1.27 in

Ref. [43].

Noting the crowd of parameters that enter into the final expres-
sions and keeping in view the availability of numerical data, we
shall confine our attention to a particular model. Johnson et al.
[47,48 reported the first instance in which all the input param-
eters necessary for a complete description of acoustic material

égoperties within the context of Biot theory have been measured

independently over the entire frequency spectrum. The input pa-
rameter values for water-saturated Ridgefield sandstone, which
are used in the calculations, are compiled in Table 1.

Figures 2 and 3 each displays the inertial and the resistive com-
ponents of the modal acoustic impedance, for a radii ratio of
a,/a;=20cm/10cm, and 200 cm/100 cm, respectively, with
open interface conditiofi.e., k=) and basic material proper-
ties as given in Table 1. Here we note the high-frequency oscilla-
tions of modal impedance curves, which is due to boundary inter-
ference and rebeveration effects, as it is discussed in detail by
Hasheminejad and Geefd9]. To assess the effects of interface
condition, porosity, and frame stiffness on modal impedance re-
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sults, several computer program runs were made using various
source and cavity sizes. It was concluded that the most pro-
nounced overall effects occur for a radii ratio near uritg.,
small gap sizg Figures 4 to 6 display such effects for the selected

radii ratio ofa,/a;=12.cm/10 cm.

curves

10.0

(a/a;

In regard to the borehole condition, obviously the creation of a
borehole may drastically change the properties of the surrounding
medium in the vicinity of the well-hole wall. As most of the
acoustic experimental techniques are highly sensitive to the per-

meability of the interface, it seems logical to investigate the effect
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Fig. 3 Modal acoustic impedance curves (ayla;

=200cm/100cm, kg=®)
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Fig. 4 (a) Effect of interface condition on modal acoustic re-
actance values (a,/a;=12cm/10cm); (b) effect of interface
conditon on modal acoustic resistance values (ay/a;
=12cm/10 cm)

of an interface condition on radiation loading of the cylindrical
source. This effect may be studied through the parametex 0

<, which, as explained before, characterizes the permeability of
the interface. For simplicity we have only considered two limiting
cases ofkg=o (fully open interfacg and ;=0 (completely
sealed interfage The relevant results are compared in Figa) 4

and 4b). As expected, the modal impedance values increase as the
quality of interconnection weakens. Note the extremely high re-
actance value obtained for the=0 (“breathing”) mode in the
sealed interface case. In this instance, fluid exchange through the
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Fig. 6 (a) Effect of frame stiffness on modal acoustic reac-
tance values (a,/a;=12cm/10cm, k;=x); (b) effect of frame
stiffress on modal acoustic resistance values (ay/a,
=12cm/10cm, k=)

Fig. 5 (a) Influence of porosity on modal acoustic reactance
values (a,/a;=12cm/10cm, ks==); (b) influence of porosity
on modal acoustic resistance values (a;/a;=12cm/10 cm,

Kg=)

a~1¢s (Berryman[50
interface is impossible so we expect the Biot dissipation mecha- o | Y 500 (39)
nism to become negligible as in the case of wave propagation in A~ m (Allard [40]).

an infinite elastic medium.
The influence of porosity on modal impedance curves is shownTable 2 displays the input parameter valuesdpand A which

in Figs. 5a) and 8b). For the reason of clarity only two porosity are utilized in numerical computations. The main outcome is the

values are examined, namepy=0.27 and®,=0.47. The related increase in impedance values as the pordsituosity) decreases

tortuosity and A values are obtained by scaling the experifincreasep This result is readily conceivable, since as the porosity

mental values given in Table 1 according to the followinglecreasetortuosity increasgswve anticipate higher force oppos-

approximations: ing modal vibrations of the cylindrical surface inside the cavity.
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Table 2 Estimated values for tortousity, characteristic viscous curves are the product of an exact treatment of the fluid/structure

length, and frequency. (Note: values listed in the first row are interaction that involves utilizing Biot's dynamic model and the
experimental, taken from Table 1. ) appropriate boundary conditions of poroelasticity. The numerical
™ o A o results reveal the important effects of the interface condition, po-
rosity (tortuosity, and frame stiffness on the computed modal
0.37 1.58 19.4x10°* 8.36x10° acoustic impedance values. They also show that for the given
0.27 1.85 24.7<107* 5.18x 10° arrangement the pulsatingxpander-type cylindrical source is
0.47 1.40 16.2<10 * 12.02¢10° expected to be an efficient sound projector even at the low-

frequency limit. The presented formulation can lead to a better
understanding of dynamic response of downhole souaasustic
logging tools which are commonly applied in seismic prospect-
ing. Moreover, the proposed model is equally applicable in noise
control engineering situations in which the surrounding medium
consists of rigid(elastio frame porous materials. Therefore it is
hoped that this work may initiate further studies, both theoretical
and observational, in the acoustics of fluid-saturated porous
media.
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Buckling of Laminated Composite
ok stukia § - Rectangular Plates Under

M.N.R. Engineering College,

s | TrANSi€Nt Thermal Loading

Applied Mechanicsgép!\m::: This paper deals with the nonlinear dynamic buckling of laminated composite rectangular
ITT, plates subjected to uniform time-dependent in-plane temperature-induced loading. The
Delhi 110016, India dynamic post-buckling deflection response is obtained and dynamic critical temperatures
are estimated. The nonlinear governing equations of motion are solved analytically using
fast Chebyshev series technique. The numerical results for CCCC, CCCS, CCSS, CSCS,
CSSS and SSSS boundary conditions are preselidé: 10.1115/1.1485755
1 Introduction and Hetnarskj10] presented an investigation of dynamic stability

far linear elastic structures due to nonuniform time and space-
pendent stochastic temperature field. They used the Liapunov
ethod for solving the stability problems of laminated plates. Li-
rescu and SouZd 1] investigated the effects of nonlinearities on

'e dynamics of orthogonal stiffened simply supported flat panels

. ??aving initial geometric imperfections and subjected to lateral
have been the interest of the researchers for the last several Y& &ssure and uniform temperature field through thickness.

A majority of the published literature is concerned with time- |, the present study, the nonlinear dynamic analysis of lami-
independent temperature fields and application of numerical 8psiaq composite plates subjected to uniform in-plane temperature
proaches. The dynamic instability behavior of composite lamis carried out using Chebyshev seri@x and Parkef12]) and
nates subjected to harmo_nically varying uniform mechanical edggs Houbolt time marching technigueloubolt[13]). An iterative
loading has been investigated by several researoii®@e and i,cremental approactShukla and Natfi14]) is used for the so-
Birman[1], Moorthy and Reddy2] Ganapathi et a[3], and Liao |ytion, The dynamic post-buckling temperature-deflection re-
and Chend4]) and still has an interest. A review of the literaturesponse is obtained and the dynamic critical temperatures are esti-
reveals that the nonlinear transient response and post-buckling\pfted. Discontinuous jump in the characteristics parameter
laminated composite plates under transient thermal loading haw@ntral deflectionor the point of inflexion of the maximum dis-
received little attention. _ _ placement response or convergence failure in 300 iterations due to
Nonlinear random response of antisymmetric angle-ply lami small increment in the marching variatflead) is adopted as a
nated composite rectangular plates subjected to thermal ajileria for the estimation of buckling loa@udiansky and Roth

acoustic loads was investigated by Lodkd. He used a single- [15], Stephens and Fultdii6], and Jain and Natfil7]).
mode Galerkin approach in conjunction with the method of

equivalent linearization. Abbas et §f] carried out nonlinear flut-

ter analysis of an orthotropic composite panel under aerodynamic )

heating. They estimated the nonlinear dynamic deflection for d& Formulation

ferent aerodynamic pressures and obtained the Poincare sectionperfect bonding between the orthotropic layers and

Lee and Led7] studied the vibration behavior of thermally posttemperature-independent mechanical and thermal properties are

buckled anisotropic plates, using the finite element method. Thgiésumed. The displacement field at a point in the laminate shown
model was based on the first-order shear deformation theory gadckig. 1 is expressed as

von Karman strain displacement relations. They investigated the
effects of fiber orientation angle and aspect ratio on the post- U(X,Y,Z,t) =Uo(X,Y,t) +Z¢(X,Y,1)
buckling and vibration behaviors for a simply supported laminated
plate subjected to steady-state in-plane uniform temperature field. VXY, Z,0)=0o(X,Y,1) + 24y (X, Y1) @)

The geometrically nonlinear supersonic flutter characteristics of _

laminated composite thin plate structures subjected to thermal WIX,Y,Z,H)=wo(X, Y1)

loads were investigated by LiaW8], using a 48-degree-of- whereu,, vy, andw, are displacements at a point on the mid-
freedom rectangular laminated thin finite element. The influengtane of the platey, , y, are rotations okzandyzplane, respec-

of the amplitude of vibration on the dynamic stability regions ofively.

composite laminates exposed to temperature field was carried ouThe strain-displacement relations due to von karman-type non-
by Ganapathy and Tourati¢®] using the finite element method. linearity become

They evaluated the instability boundaries from the nonlinear gov-

The structural elements of certain advanced engineering str
tures are subjected to a periodic, intense thermal input, whi
generates a high level of structural vibrations and instabili%
Large stresses due to dynamic instability lead to structural failur,

erning equations using a direct iteration technique. Tylikowaski ( i E 2 )
Uox™ 5 (Wox)
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, February _ Voy™ 5 (Woy 20 Dyt 2
1, 2001; final revision, November 15, 2001. Associate Editor: R. C. Benson. Discus- Yxv (= z XY vx (- (2)
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, YXz UO,Y+U0,><+ Wo xWoy 0
Department of Mechanical and Environmental Engineering University of California— ¥ 0
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four Yz Wonyr Uy
months after final publication of the paper itself in the ASMBURNAL OF APPLIED
MECHANICS. \ Woyt iy )

684 / Vol. 69, SEPTEMBER 2002 Copyright © 2002 by ASME Transactions of the ASME



Thermal force and moment resultants are

N; , M% n . 811 812 815 ay

NTy ,M¥ =k21 f Q2 Q2 Qu ay

NI M Sl 0 0 | |«

Xy Qe Q6 Qeed, 7K
XAT(t)(1z)dz 5)

whereAT=applied temperaturereference temperature.

The laminate stiffness coefficientsAi ,B;; ,Dj;) defined in
terms of the reduced stiffness coefficien@;;( for the layersk
=1,2—n (Joneq 18]) are

! Zk — « .
(Aij, By, Dij):kzlf (12,2%)(Qj)x dz (i,j=1,2,6
- Zk-1

E Z0 h/ﬁ (6)

Z

" { |
1

¢ where k3=5/6, ki=5/6 are shear correction factof§Vhitney
[19]).
Fig. 1 Geometry of laminated plate Neglecting the body forces and surface shearing forces, the

equations of motion along with the admissible domain conditions
can be derived using Hamilton’s principle.
The equations of motiofiyang, Norris, and Stavskj20]) are

The stress and moment resultants of laminated composite rect- _
. . . . + = +
angular plates having layers of orthotropic lamina, subjected to Nxxt Noxy,y =RUgy+ S,y ®)
thermal loading due to uniform in-plane temperature can be ex- N +Nvv=Ru~+S 9
pressed as XY, X Y. Y 0t ‘/’Y,tt ( )
Ay Ay A By B Byl Qx,xt Qv y +R(N; ,W)+q=RWyy (10)
Nx
NY A12 A22 A26 BlZ BZZ BZG M X,X+ MXY,Y_ QX: SLb,tt+ I lﬂx,n (11)
A Ax A B B B
Nxy | _| P16 A2s Res P16 oo Bos MyxyxtMyy—=Qy=Svou+ iy« (12)
Mx Bii Biz Big Dir D1z Dig .
My where in-plane R), coupled normal-rotary §), and rotary(l)
M Bi2 Bz Bz Diz D2 Dy inertia are
XY
|Bis B2 Bes Dis Dag Des o2 s
1 (R,S,I):J' p(1z2,2%)dz=, f pM(1z,22)dz. (13)
Upxt+ E(Wo,x)z —hf2 k=1 Jz,
N . . .
X The nonlinear operator in EQ10) is
3 (Woy)? Ny
v =(w
o ey NIy SO L D L R aw)
XV ugy+voxtwoxwoy|[ ) ML 3) Tax U Xax Ty LY ax | T x| Yy
T
Iy x MTY J N aw 14
+ = — .
by My oY \ Yoy (14)
Pxyt Py x Substituting Eqs(2)—(7) in the equations of motiof8)—(12),
Q A A the governing differential equations are transformed in terms of
{ Y]: 4 s [WZJ. (4) the displacement components and are expressed in nondimen-
Qx) [Ass Assll7xz sional form as

I—lu,><><+ I-2U,yy+ L3u,xy+ L xx T Lsv yyt Lev xy T L7¢x,xx+ I-Slvkx,yy"' I-9¢x,xy+ LlO‘//y,xx+ I-11¢y,yy+ le‘//y,xy

T =T
(L 13W oyt L1gW gy L1gW )Wy + (L 1gW ext LagW gy LagW )W y = L1gNy = LooNyy = R1U -+ Rty .- (15)

L21u,><><+ I-22u,yy+ L23u,><y+ Lo xxt Losv yy T Logv xyt Lozthy xt I-28‘#x,yy+ L29’//x,><y+ Lsowy,xx"' I-31‘/’y,yy+ L32¢y,xy

+ (L33vax+ L34W:yy+ LSSWrxy)W1x+ (L36W1xx+ I-37vay+ L38W:xy)va_ L39N‘>I<—y,x_ I-40N;|/—,y= R3UYTT+ R4¢y,ﬂ— (16)
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LW,y t I-42vay+ |-433vay+ Laaihy x+ I—45‘//><,y+ |-461r//y,><+ I-47‘/’y,y+ (Lagu,x+ L49U,y+ Ls,xtLsw wt Lsothx x+ L53‘//x,y
+ L54¢y,x+ L55¢y,y)vax+ (Lsgu,xt+ I—57u:y+ Lsgv,x+Lsg T LGOL//X,X+ Lelwx,y"' I-62‘1by,x+ L63‘/’y,y)Wryy
+ (Lealsx+ |-65ury+ Lesv xtLe wt Legifuxt I-Ggll/x,y+ I—70‘/’y,x+ I—71‘//y,y)Wv><y+ (L7oW, it L73vayJr L74vay)(va)2

2
+ (L78W xx T L7gW,yy + LW, ) (W,y) S (L7gWo wx T L7gW,yy - LgoW,wy )W, W,y + (LgaU, -4 Lgothy ) Wi

Yy

+ (L, -+ Laathy -7)W,y— LasNxW,xx— Lsemw L87NInyxy+ q* =RsW, , (17)

Yy

LggU, xxt Lggl,yy+ Loglsxyt Lot xxT Lo yytLogv xyt Loathy xxt Losthy yy+ Losthu xyT Lozthy xxT Logily yyT Logthy xy
+L100W,x+ LaotW,y+ Ligathy+ Laoathy + (L 10aW,xxt L10gWoyy+ L10eW,xy) Wy + (L1oMW,yxt L1ogW,yy+ L1ogWxy) Wiy
LM, XX — LMy, xyy = Rels 77+ Rty - (18)

Lialyyut Loagyy T Laadhigyt Lot st Liag yy T L1a xyt Laghuoxx T Lazox,yy T Laoothu xy T Laoathy, xxt Lioothy yy

+ Laogly xyt L12aW,x+ Laosth,y + Liosthxt Laozthy T (L1ogW, st L1ggW,yy+ Liggh,xy)W

F (L1aWixx+ LW,y + |—133W,xy)W,y*|-134Wy,x*|-135M;,y:Rsvw+ Rotby 77+ (19)
The nondimensional parametets,, L,, ... andR;, R, ... and nondimensional timeare given in the Appendix.
[
Boundary Conditions. M-r N M N-s
(a) simple supportedS): Gi=[6>, > ¢TOT(Y) | x| 6>, > ¢ET(0T;(y)
i=0 j=0 =0 j=0
u,Nyy W,My, =0 at x=—1 and 1 Y i =0 (233)

Nyy,0,W, %, ,M,=0 aty=—1 and 1
(b) clamped C):
U,ny,W,l,b'x,lﬂy:O at Xx=—1 and 1

where

(¢ij)3=A(ij)3-11B(ij) -2+ Cl(ehij)s-3. (24)

During initial steps-marching variables, the coefficieats, C
Nyy 0, W,y ,hy=0 andy=—1 and 1 of the quadratic extrapolation scheme of linearizafibiath and
. Sandeef)21]) take the following values:
3 Method of Solution

A general functiong(x,y) can be approximated in the space 1,0,0 (J=1); 2,-1,01J=2); 3,-3,1 (J=3).
gg??grg{tlhzﬁ) f;nsite degree double Chebyshev polynortifak The product of two Chebyshev polynomials is expressed as
Mo N TO)Ti(WTCOTIY) =[Ti k(O T2V + T k()T - 1Y)
POy =02 2y Ty (20) T 00Ty ) T 0Ty () 4,
where (25)
The displacement functions and loading are approximated by fi-
o= 1 if i=0 andj=0 nite degree Chebyshev polynomials as

1 ) . ) (u,v,W, ¢y, 4,,Q)
5=§ if i=0 andj#0 ori#0 andj=0

N
> (Ui »0ij s Wij Py » Py Qi) Ti(X) T(Y);

M=

6=1 otherwise. :5|:0 “
The spatial derivative of a general functigr{x,y) can be ex- C1ex<1
pressed as SXs (26)
—1lsy=<l
M-r N-s
52 2 SETIOT;(y) (21) The implicit Houbolt time-marching schem@oubolt [13]) is

used to evaluate the acceleration terms.{;, (v ,.);, (W ,.)J,
Here,r ands are the order of derivatives with respecttandy, ~(¥x.r-)a, @nd @y ), in the governing equations of motion. The

respectively. expression for general acceleratiop (), is evaluated as
The derivative functions!® is evaluated, using the recurrence
relations gli\(/e:Ibel::OXIarr%JP;rk[;/I:Z]u Heing . (¢,TT>J:(Bl¢J+BZ¢Jfl+B3¢J72+B4¢373+BS)/(AT?Z?)

rs (r=1s
$-1)j= v+ 2 i (22) where 7 is nondimensional time an@; are coefficients of the
B =S +2 ¢r(s 1 time-marching scheme.
G0 7iG+y Making use of the above procedure of spatial and temporal
The nonlinear terms are linearized at any step-marching vadiscretizations and linearization, the nonlinear differential Eq.
able using the quadratic extrapolation technique. A typical nonli5)—(19) are discretized in space and time domains, respectively.
ear functionG at stepJ is expressed as A set of generating linear algebraic equation can be expressed as
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Table 1 Convergence study for four layers antisymmetric
cross-ply [0/90/0/90] square CSCS plate (a/h=10, ga*/E,h*
=50, Material A)

Table 2 Comparison of uniaxial nondimensional static critical
loads A\ (=N,b? E,h®) for symmetrically laminated cross-ply
simply supported square plate  (a/h=10, Material A)

Center A 7=0.1) Ner
M,N w, (max,) T M, (max T Number of Layers E;/E, Present Noof22] Owen and Li[23]
5 0.516899 12.6 2.46606 9.6 3 40 22.7273  22.8807 23.3330
6 0.498366 11.2 2.52769 9.7 30 19.2300 19.3040 19.6872
7 0.493602 11.2 2.39125 9.8 20 15.1563 15.0191 15.3201
8 0.499053 11.4 2.29421 10.4 10 9.8920  9.7621 9.9590
9 0.497812 11.4 2.28463 10.3 3 5.3754 5.3044 5.4026
}2 8'28%2% %H %ggg% g'g 5 40  24.8322 25.2150 24.5929
12 0'493070 111 2.32018 9'9 30 20.8000 20.9518 20.4663
) ) ) ) 20 15.8696 15.9976 15.6527
Center (M=N=9) 10  10.1712  10.1609 9.9603
_ 3 5.4487  5.4208 5.3255
AT We (max) 7 My (max) T 9 40 25.6957  25.7093 25.3436
0.2 0.474231 11.6 2.28616 10.4 30 212281 21.2697 20.9614
0.1 0.497812 114 2.28463 10.3 20 16.1403  16.1560 15.9153
0.05 0.497660 11.3 2.27933 10.6 10 10.2344  10.1990 10.0417
3 5.4281  5.4187 5.3352
5 M-2N-2
2 F(Ui 0 Wit Ui i, Qi) Ti(X) Ti(y) =0. solution, the multiple regression analyéiath and Sanded21])
k=1 i=0 j=0 b ey ! based on the least-square error norms is used. The nonlinear terms
(28) are transferred to the right side and computed at each step of the
Similarly the appropriate sets of boundary conditions are also d@_archlng variable. The left side matrix consists of linear terms

and hence remains invariant with respect to the marching variable.
N The set of linear equations are expressed in matrix form as
+1). Collocating the zeroes of Chebyshev polynomials,

he zer [Al{a}={Q} (29)
5(M-1)(N-1) algebraic equations are generated from the govern- ] o ) ) )
ing differential  equations. Similarly the CCCGall edges Where[A] is the (n¥n) coefficient matrix{a} is the (rf1) dis-
clamped, CCCS(three edges clamped and one simply supportedPlacement vector, anfQ} is the (nf'1) load vector. Multiple re-
CCSS(two opposite edges clamped and two simply supportedyression analysis gives
CSCS(two adjacent edges clamped and two simply suppgrted _ T 17 AT
CSSS(one edge clamped and three simply supportedd SSSS {a}=([A]'[A]) TAI'{Q}

(all edges simply supportg¢dhoundary conditions generate (10Mor
+ 10N+ 16), (10M+10N+15), (10M+10N+14), (10M+ 10N (al=[B]{Q} (30)
+14), (10M+ 10N+ 13), and (10M- 10N+ 12) algebraic equa- ’

tions, respectively. It is clear that the total number of equations The matrix[B] is evaluated once and retained for subsequent
more than the unknown coefficients. In order to have a compatihisage.

cretized.
The total number of unknown coefficients are 5{(NI)(

-0.4 s 1 1 ! — ! L

0 200 400 600 800 1000 1200 1400 1600

T

Fig. 2 Central displacement response for antisymmetric angle-ply [45/-45/45/-45]
square SSSS plate (a/h=20, Material B ) under in-plane uniform thermal loading

Journal of Applied Mechanics SEPTEMBER 2002, Vol. 69 / 687



Fig. 3 Central displacement response for unsymmetric angle-ply [0/15/30/45] square
SSSS plate (a/h=20, Material B ) under in-plane uniform thermal loading

4 Results and Discussions rectangular plates with SSSS, CCCS, CCSS, CSCS, CSSS, and

. . . . . CCC boundary conditions are presented. Two materials consid-
The nonlinear governing equations of motion for a Iamlnate%r d for the analyses are:

composite rectangular plate subjected to transient thermal load . ) — _ _ _
are solved, analytically using fast converging double Chebysh H(}ey”al g'stllEz 25, G12=0.5;, G25=0.2, G13=Cyp,
series approximations. In order to check the accuracy and stabifity” 12~ <>

of the method a convergence study is carried out. Table 1 reveals a=ay, @,=10 ag, ap=10% Yc,
that the nine-term expansion of Chebyshev series and an incre-
ment of 0.1 for nondimensional timeare sufficient to yield quite p=8x10 % Kg-Seé/cm".

accurate results. An iterative incremental approach with relati

convergence criteria of 0.01% of each coefficient at every step 9 terial B: E,=181.0 Gpa,F;=10.3 GPa,1,;=0.28,G1,=Gy3

the marching variable is adopted. The in-plane uniform temper5-7'17 Gpa,
ture is incremented in small steps. The transient thermal post- G,3=2.39 Gpa, @;=0.02n, a,=225 ay,
buckling responses are obtained and dynamic critical temperatures
are estimated. The numerical results for cross-ply and angle-ply ao=10"% %c, p=8x10 % Kg-Sec/cnt.
1
0.8 A
st -:222
-—=223
—224
—-=-226
---=23
------ 25
—a—3
o —e—3.2
_0.6 1 i 1 1
0 500 1000 1500 2000 2500
T
Fig. 4 Central displacement response for symmetric cross-ply [0/90/90/0] square

CSCS plate (a/h=20, Material A') under in-plane uniform thermal loading
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Fig. 5 Central displacement response for antisymmetric cross-ply [0/90/0/90] square

CCSS plate (a/h=20, Material A') under in-plane uniform thermal loading

The nondimensional temperature parameters are defined as displacement increases with increase in the in-plane temperature
_ -~ and at a certain temperature level there may be a sudden jump in
Mr=aATX10°  and Ay, =aoATx10" the deflection but is not observed distinctly.

The present methodology of solution is validated by comparing The central displacement response for four-layer symmetric
the results of nondimensional static critical loads obtained I$foss-ply CSCS platéa/h=20, Material A is plotted in Fig. 4.
Noor [22] and Owen and L[23] using the three-dimensional lin- The deflection response fary=<2.22 do not show discontinuous
ear elasticity solution and finite element method, respectively. TiMp but for the response at=2.23, there is a sudden jump in
comparison of the results is shown in Table 2. It is observed th#e deflection at approximatelyequal to 1000. In fact the jump
results are in good agreement and have a maximum differencdrothe deflection is not distinct in the plots as the amplitude is very
less than 3%. small. The displacement response for antisymmetric cross-ply

The central displacementv() response for antisymmetrjg5/- CCSS and CSSS platéa/h= 20, Material A are shown in Figs.
45/45/-45 and unsymmetri¢0/15/30/43 angle-ply square SSSS5 and 6, respectively, and similar conclusions can be deduced.
plates for(a/h=20 and Material B are shown in Figs. 2 and 3, Itis difficult to estimate dynamic critical temperatures from the
respectively. From these plots it is clear that the maximum pedisplacement response. In order to estimate the dynamic critical

At
——0.8
—=1
----- 15
=2
) ~-—=-25
2 —3
_08 1 1 1 ) I 1 1
0 50 100 150 200 250 300 350 400
T
Fig. 6 Central displacement response for antisymmetric cross-ply [0/90/0/90] square

CSSS plate (a/h=20, Material A) under in-plane uniform thermal loading

Journal of Applied Mechanics SEPTEMBER 2002, Vol. 69 / 689



6 symmetrically laminated plate. The dynamic critical temperature
Material A and post-buckling strength for an antisymmetric cross-ply plate
are less than for a symmetric cross-ply plate.
5 -
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Fig. 7 Dynamic thermal post-buckling response of laminated Az
I(;oamd%c;site plates (a/h=20) under in-plane uniform thermal (ﬁ _‘r) (ny,NIy),B |\“/| |\‘/|T) (MvaI)hIBZ
W Agg o Du '
Table 3 Nondimensional dynamic critical temperatures for T 2 T 2
laminated composite square plates  (a/h=20) (,\7 MT): W (,\7 MT )= (Myy My
vy D22 ’ ey D66
Material A
Nondimensional Dynamic qa?
Critical Temperature q*= A0 M=aoATX 10, Ay = apATe X 103,
Lamination Scheme Boundary Conditions A7, 22
[0/90/0/9Q SSSS 1.35 4A,,
CSSS 1.41 T=1X m
CCSS 1.65 B
CSCs 2.15
CCCs 2.29 _Aess_, A A
ccce 3.7 Li=1 Lo=7—A% Lg=2—N  La=7—,
[ [0/90/90/Q 5 CSCS 2.22 1 1 1
45/-45/45/-4 CSCs 2.64
Material B L =A_26 2 _(A12+ Agg)
[45/-45/45/-45 SSSS 2.06 STA, T 8 AL
[45/-45/45/-45 cces 3.32
[0/15/30/45 Ssss 0.57 By, Bes Bys Bus
L,= , Lg= N, Lg=2 N, L= ,
T Ayh 8 Ah % Auh 07 AN
B (B12+Bge)\
. . . 26 | 5 127 D66
temperature, maximum peak deflections versus in-plane tempera- |-11=ﬂ v L= A h
ture are plotted for cross-ply and angle-ply plates with different u
boundary conditions and is shown in Fig. 7. Dynamic critical 2 Ags A2 A A
temperatures are estimated and are given in Table 3. Dynamic |-13=/—3, LM:ZA_E' L15=4A— /—3
critical temperature and post-buckling strength are higher for an u u
antisymmetric cross-ply0/90/0/90 CCCC plate and the post- A\ Ay \° (A+Age) N2
buckling strength is lower for E0/90/0/90 SSSS plate. Dynamic Lie=2% B’ Li=24— B MEETALT B
critical temperature and reserve strendtiad carrying capacity n n 1
after buckling for a four layers antisymmetric angle-pl¢5/-45/ Ass Ass

; . _ _ 66 _ _ 2
45/-45 CSCS plate are higher than for four layers symmetric L19=0.5, L2070.5A—)\, Ler—, Lzz*A_)\ ,
[0/90/90/0 and antisymmetri¢0/90/0/9Q cross-ply CSCS plates. 1 2 2

A symmetric cross-ply{0/90/90/0 CSCS plate has higher dy- (Aot Age) Age
namic critical temperature than an antisymmetric crosg-m90/ |-23=A— ) EL TN
0/90] CSCS plate. 22 22
A26 BlG BZG
. —\2 — _ — 2
5 Conclusions Los=N4, Lo 2A22’ 2T p 0T % Azzh)\ )
The displacement response for laminated composite plates sub-
jected to uniform in-plane dynamic thermal loading is obtained. :(Blz+ Beo) :ﬁ
Dynamic critical temperatures are estimated from the plot be- 27 ALh T ALK
tween maximum peak deflection and thermal loading. It is ob-
served that lamination scheme and boundary conditions have sig- L _E)\z Lo=2 Bas L —Zh
31— ’ 32— 1 337

nificant effects on dynamic critical temperature and reserve Ayh AxB’
strength of the plate. Dynamic critical temperature is higher for an 5
antisymmetric angle-ply laminated plate than for symmetric or L34:2A26)‘ (As2t Ace) ﬁ

antisymmetric cross-ply laminated plates. It is lower for an un- A_zzg B~ An B
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Editorial Department.

Crack_Tip Field of a SUpGFSOﬂiC The general solution to the stress field for an anisotropic mate-

. . rial in the subsonic regime is obtained using the Stroh formalism
Bimaterial Interface Crack ([9]). For a complete description of the mathematical procedures
leading to the results in this work, the reader is referrd@toThe
special feature in the supersonic regime is that some or all of the

J. Wu six Stroh eigenvaluep;(i=1, . .. ,6)become real, of which only
Conexant Systems, Inc., 4311 Jamboree Road, Newporthese three representing upward energy flow the positive
Beach, CA 92561. Assoc. Mem. ASME y-direction in the upper half-plane and these three representing

the downward energy flow in the lower half plane should be se-
lected for the current interface crack problem. A good discussion
. . . ~ . on the selection of the proper eigenvalues is givefldj. Math-

The sextic approach was used to investigate the asymptotic fielggfatically, Stroh showed that the energy flow direction with re-
a bimaterial interface crack in the entire supersonic regime a”Qbect to they-axis has the same algebraic signfasL,, ([9]),
extended to include the combination of isotropic and homog@mere A is the polarization matrix and. the traction matrix.
neous materials, where the sextic method had been considefgfsically, the energy flow is associated with the group velocity.
difficult. Application to typical systems was demonstrated. It should also be noted that, when an eigenvaiuis real, the
[DOI: 10.1115/1.1427338 phase velocity of the plane wave associated ittas a direction

(x, y) that can be explicitly expressed in terms pfas p=y/x

([9]). Generally, the phase velocity and the group velocity do not
Introduction necessarily have the same direction. However, in cases where the
6\_No velocities do have the same direction, the selection of the real
eigenvaluep can be made directly based on the algebraic sign of
H’ae eigenvalue itself.

The crack-tip field of a static interface crack between two is
tropic or anisotropic materials has been well underst¢ae 3)).
In the lower part of the supersonic regime, the experimental a .
theoretical progress in interface dynamic fracture mechanics ofF.Or the problem stated ab_ove, the eigenvalue problem fo_r the
isotropic bimaterial systems is represented by the work of Tipp §C|Ilatory '“d?xf ar]d the eigenvecton can be expressed in
et al.[4], Liu et al.[5], Lambros et al[6], and Huang et al.7]. erms of the bimaterial matrild as
However, the crack-tip behavior of isotropic bimaterial systems in H*w=AHw,
the upper supersonic regime and that of anisotropic bimaterial { N=g27e - 1)
systems in the entire supersonic regime had not yet been solved ] )
by the time of this work, which is the major focus of this briefin €ach half-plane, the displacement and the stress fields are ob-
note. Based on an early mathematical formulatj@), this prob- tained in terms of the stress potential vecgpas
lem was solved using a sextic approach for a given bimaterial u=2Im(B)
interface crack composed of any combination of anisotropic and '

isotropic materials with the crack tip moving at an arbitrary con- T_oR ﬁ

stant speed. Application to typical systems was demonstrated. {012 02 023 = oz @
. N . g

Eigenvalue Problem for the Crack-Tip Field in the Su- {o, 01, o13'=2 Re{ M E)

personic Regime . o o
. - N . hereB is as defined iri2]. The matrixM is introduced here for
For a bimaterial interface crack shown in Fig. 1, Materials | an\f%e first time to write the results in a compact form, which is

Il occupy the upper and the lower half-planes, respectively. Thtine in terms of the material densjtyand traction matris as
constant crack-tip speedis measured with respect to a quiescent

coordinate systert’ —o’ —y’. The moving coordinate system M=—ipv’B-LPL™%, and P=dia[p;,p;,psl,
—o—y is attached to the crack tip. wherep;, i=1, 2, 3, are the three Stroh eigenvalues used in

Comtibuted by the Abplied Mechanics Division of f biication in th ASMEconstructing the general solution in the corresponding half-plane.
ontribute: y the Applie echanics Division of Tor publication in the H H H
JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied The Stroh eigenvalue problem is degenerate in case of a system

Mechanics Division, September 26, 2000; final revision, July 30, 2001. Associaddth high symmetry. For example, it has only one independent
Editor: H. Gao. eigenvector in the case of an isotropic material, so special
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Fig. 1 A half-space crack with its tip moving at a constant
speed v with respect to the quiescent coordinate system

x'—o'—y' Fig. 2 A singular characteristic line corresponding to a real

eigenvalue in the Stroh eigenvalue problem Eq. 1)

schemes were used to set up the proper eigensysfénid)).
Besides, it has been argued that the formulation for a bimaterial
interface crack does not converge to that for a homogeneous m
terial ([2]). This work showed that both problems could be solved
elegantly if the following six-dimensional polarization matrix is

These eigenvalues can be degenerate. All the three branches are
decoupled from each other in this case, and correspond to the
3node 1, mode II, and mode I crack-tip fields, respectively.
This solution is designated as the Type Il, and is nonoscillatory.

set up for an isotropic material 3 Singular Characteristics
For a real Stroh eigenvalug the independent variable=x
1 -p, 0 1 p; P2 +py becomes real. The corresponding characteristic line
A=|ps 1 0 —-p; 1 1 ©) makes an angle af=7—tan (1/p) with the positivex-axis.
2 There are maximum three singular characteristic lines in each
0 0 1 0 -1 1+p; half-plane. Consider Type | crack-tip field in material | as an
where the Stroh eigenvalug@s andp, are given by example. Using a rectangular coordinate system-y’ at-

tached to the singular lin€rig. 2), it can be shown thair,;
v =0, i=1,2,3, forz,x'<0. However,o,; approach infinity on
CL the other side 4,x'>0) of this singular line, according to

and ¢, and c; are the dilatational and transverse shear wave |X'| Y27, |x/|7271<" " and |x’|"¥2*ies, for the three

speeds, respectively. E(B) defines six independent eigenvectors branches of the oscillatory index, respectively.

that span the proper eigenspace of the sextic problem for the iso-

tropic material. L . . .
In the case of homogeneous systems, it was proposed here fBplication to Typical Bimaterial Systems

if the homogeneous material is divided into two half-spaces alongin the following cases, only the singularity exponeptwas

a plane containing the crack, then the formulation for a bimateriplotted, which is related to the oscillatory index e, +iey, by

interface crack developed above can be applied directly with tge-1 + ¢ and the crack-tip deformation field is proportional to

two materials having identical properties. Moreover, there is N0-qtie The physically meaningful value is limited t0<(lq<%

difficulty with the convergence of results for the bimaterial Sys'(':onsidering the requirement for a finite strain energy and the con-
tems to that of the homogeneous ones. The example in the follow-

ing sections will show that this treatment gives the correct results.

2
-1, P2=

2
-1

1% 1%

pP1= cr

0.7 ——
Discussions on the Solutions 06 |
If N is an eigenvalue of Eq1), 1/A* must satisfy the equation, '
too. Therefore, two types of solutions are obtained. x 05 T
1 Type | Field 2 o4 1
When the eigenvalue is not equal to the reciprocal of its cong 03 ]
plex conjugate, i.e\ # 1/\*, there are three sets of solutions;‘:é 0.2 |
2 0.
(e,w), (—€*,w*), and (e3,Ws), (GO o1 |
where the oscillatory index= ¢, +i €, is complex and so is its rfg 0 i
corresponding eigenvectar, e is a purely imaginary number, 3 .
with a corresponding real eigenvectsg. For the convenience £ -0.1 - T Nbcﬂsapph sapph
of discussion, the stress field associated with this solution | Ny T2 €L | opy 5PN sapph R
called the Type | field, and is oscillatory. The three eigenvalue | l l l i ik i
in this paper are referred to as theanchesbecause in general 0.3 e
they do not correspond to the three fracture modes. 0 01 02 03 0',4 05 ) 06 07 08 08 1 1.1 1.2
ield Crack tip velocity ( X 10000 m/sec )
2 Type Il Fie

When all the three eigenvalues satiafy 1/\*, they are purely Fig. 3 The real part of the two coupled branches of the oscil-
imaginary and result in three real eigenvectors. The solution lgiory index as a function of the crack-tip speed for the aniso-

this case can thus be expressed as tropic niobium-basal sapphire system. The two branches have
identical real parts but with opposite sign. The third branch
(iemp,wWy)  (i€ma,Wo) (i €mz,W3). (5) always has a zero real part.
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Fig. 4 Crack-tip singularity exponent g as a function of the 0.2 u ,l l . l . A \L
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oscillatory index e.
Fig. 6 Crack-tip singularity exponent g as a function of the
crack-tip speed for the isotropic PMMA-steel system. Note, q

vergence of the volume integral for the strain energy along thel/2+€m. Where &y is the imaginary part of the oscillatory

singular characteristic lines in addition to those around the poi'rrffjex &
of the crack tip.

Anisotropic-Anisotropic Bimaterial Systems. The singu- directly solving the wave equations. As compared with their work,
larities are calculated for a crack growing along an anisotropibe above results are numerically identical to that. This proves that
Nb/sapphire interface, having an orientation relationshifinie above approach is mathematically correct.

(1111 (0002 s 5pphire &N [ 110]nplI[ 2110] sappnie Which occurs . . .
in the growth of single crystal niobium thin films on basal sap- Homogeneous Anisotropic Systems. The single crystal basal

phire substrates by molecular beam epitékg]. The coordinates sapphire is used to demonstrate the application to a homogeneous

are chosen such thatandy- axes are aligned with the basal plane
crystal axis and the-axis of the sapphire, respectively. The crack
is oriented with its face in th&—z plane, and its tip propagating
in the x-direction, at an arbitrary constant speed The elastic

o7 " Out-of-plane: branch Il ——
0.6 In-plane: branch | -—— |
ST in-plane: branch Il -

constants were cited frofd3] and[14]. The Rayleigh wave speed o 05 —
(cr), the transverse shear wave speeg)( and the longitudinal H o4l S
wave speedd, ) of sapphire and niobium in the crack propagation § '
direction were calculated. The oscillatory index was computed % 03¢ O ‘_‘
using the above formulas and summarized in Figs. 3 and 4. 2 02 Eo
[} P ;
Isotropic Bimaterial Systems. An example of isotropic bi- §> 01y
material systems is the PMMA-steel system that has been studied ©® 0} 5 :

extensively. The results are shown in Figs. 5 and 6. Huang et al. 01l cr, o1, o
[7] investigated one section of the supersonic regime between the N |

- -0.2 L L . h L
two shear wave speeds for the out-of-plane and in-plane cases by 0 010203040506070809 1 111213
Crack tip velocity ( X 10000 m/sec )

Fig. 7 Crack-tip singularity exponent g as a function of the

' [ i ' ' crack-tip speed for the homogeneous anisotropic basal sap-
| phire system. Note, q=21/2+¢,,, where g, is the imaginary part
N of the oscillatory index .
ot ]
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Fig. 5 The real part of the two coupled branches of the oscil-
latory index as a function of the crack-tip speed for the isotro- Fig. 8 Crack-tip singularity exponent g as a function of the
pic PMMA-steel system. The two branches have identical real crack-tip speed for the homogeneous isotropic PMMA system.
parts but with opposite sign. The third branch always has a Note, g=1/2+¢,,, where g, is the imaginary part of the oscil-
zero real part. latory index &.
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anisotropic system. Using the formulation for a homogeneous sys- Cracks gging the Sextic ApproachSeismic EngineerintASME, New York,

! : pp. 81

tem proposed above, th_e ma_te”al properties for the upper angh] stroh, A. N., 1962, “Steady-State Problems in Anisotropic Elasticity,” J. Math.

lower half-planes are set identical. The results are shown in Fig. 7. Phys. XLI, No. 2, pp. 77-102.

As well expected, the homogeneous system is nonoscillatory, ahtf] ;u’ H-RHé andL Slijo, Z'é 202&%%6%“2'; szgk Growth on an Interface,”
ot ; : roc. R. Soc. London, Ser. , PP- —246.

there are at most two distinct V.alyes for Fhe smgularlty expogent kll] Bacon, D. J., Barnett, D. M., and Scattergood, R. O., 1980, “Anisotropic

at a particular crack speed. It is interesting to note that the crack-" continuum Theory of Lattice Defects,” Prog. Mater. S@3 pp. 51-262.

tip singularity exponentq reaches a maximum of 0.5 at  [12] Gutekunst, G., Mayer, J., and Rle, M., 1994, “The Niobium/Sapphire Inter-

:‘/QCT , WherecT is the secon(ﬂargeb transverse shear wave face: Structural Studies by HREM,” Scripta MetalB1(8), pp. 1097-1102.
2 . 2 . . L . PS] Bernstein, T. B., 1963, “Elastic Constants of Synthetic Sapphire at 27°C,” J.
speed. Obviously, the singularity behavior is sharply different = appi. phys.,34, No. 1, pp. 169-172.

from that of the inhomogeneous systelifsgs. 3—6. Unfortu-  [14] Bolef, D. I., 1961, “Elastic Constants of Single Crystals of the bcc Transition

nately, there has been no analytical solution for such a system to Elements V, Nb, and Ta,” J. Appl. Phys32, pp. 100-105. o
compare with [15] Freund, L. B.,Dynamic Fracture Mechani¢cs1990, Cambridge University

Press, Cambridge, UK.
Homogeneous Isotropic Systems. The homogeneous system

of PMMA was used to demonstrate the homogeneous isotropic

systems. The results are shown in Fig. 8. In fact, the system of a

homogeneous isotropic material had been solved analytically Effective Antip|ane Dynamic
the out-of-plane and in-plane cases separately in the 196)s

The results in the present work match numerically with theirs, FéProperties of Fiber-Reinforced
instance, the singularity exponemteaches a maximum of 0.5 at i

v2ct, wherecy is the shear wave speed. The purpose of includin%:ornpOSIteS

this section here is simply to validate the eigensystem established

in this work. X. D. Wang
Discussions Mem: AS.ME
) ) o ) . e-mail: xiaodong.wang@ualberta.ca

The sextic approach as described in this work is convenient to
treat the asymptotic problem at an arbitrary crack speed for asy Gan
homogeneous or bimaterial system with either isotropic or aniso-
tropic component materials in the linear elastic regime. The crack-
tip field has a weak singularity in most of the supersonic regim®epartment of Mechanical Engineering, University of
and singularity is absent within some small crack speed intervaig$herta, Edmonton, Alberta T6G 2G8, Canada
in the case of bimaterial systems, while homogeneous systems
have singularity for all crack speed up to the dilatational wave
speed. When the singularity does not exist, it implies that an en- . ) . . .
ergy equal or above the materials’ intrinsic interface adhesive eEE'S paper provides an theoretical analysis of the properties of
ergy is required to sustain the interface crack propagation for tHaer-reinforced composite materials under antiplane waves. A
ideally linear elastic materials under consideration, that is, it gelf-consistent scheme is adopted in calculating the effective ma-
equivalent to debonding. In the supersonic regime, anisotropy r%(g)[lal constants. A new averaging technique is de_veloped to ac-
gravates crack-tip singularity, while inhomogeneity alleviates tHg2Unt for the effects of the waveform. The model is then used to
singularity significantly. The conclusions are practically importarfvaluate the effective dynamic properties of composites with ran-
in designing material systems containing interfaces. omly distributed fibers. Typical examples are presented to show

From the point of view of energy balance, a crack propagatgle effects of different pertinent parameters upon the effective
due to a finite energy release rate. However, for the linear elasti@ve speed and the attenuatiofDOI: 10.1115/1.1480819
ity considered here, the crack has a weak singularity, which results
in a zero energy release rate if it is carried out in terms of the .
conventional definition([4,5]). Here it simply assumes that thel Introduction
weak singularity would still augment the remote loading such that Fiber-reinforced composites are increasingly used in situations
it is strong enough at the crack tip to propagate it. Besides,iffvolving dynamic loading, where the evaluation of wave propa-
should be noted that the oscillatory crack-tip field has the problegation will be a main concerf{1]). Because the interaction be-

of crack-face contact, which is not covered here. tween fibers decays slowly with the distance between them, a
large number of fibers need to be considered simultaneously in the
References determination of the average properties of fiber-reinforced com-
[1] Rice, J. R., 1988, “Elastic Fracture Mechanics Concepts for Interfaci osites. Simplified mpdels, such as multiple scattering method
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[2] Zhigang, Suo, 1990, “Singularities, Interfaces and Cracks in Dissimilar Arstudy the effective dynamic mechanical properties of composites.
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[3] Ting, T. C. T., and Chadwick, P., 1988, “Harmonic Waves in Periodically: ; i i ;
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The current study proposed a new volume average process in
evaluating the effective dynamic properties of fiber-reinforced
composites by considering the effect of the waveform, which en-
ables the treatment of the variation of field parameters in the re-
inforcements. The results are then implemented into a self-
consistent scheme to determine the effective dynamic properties
of fiber-reinforced composites. Numerical examples are provided
to show the effect of the volume fraction of the fibers, the material
constants, and the loading frequency upon the dispersion and at-
tenuation properties of the composites.

2 Formulation of the Problem ‘ . ‘

Cor_1$_ider the antiplane .prOblem.Of a fib(_ar-reinforced composiﬁg. 1 Antiplane wave propagation in fiber-reinforced com-
containing randomly distributed circular fibers of radiRswith posites
volume fraction¢, subjected to a harmonic incident wave of fre-
guencyw, as shown in Fig. 1. For the steady-state dynamic solu-
tion of the problem, the time fact@'“! applying to all the field

with N andM being in terms of the material constants, geometry

parameters will be suppressed. famd frequency. The effective constitutive relation of the composite
It is assumed that the composite can be modeled as an effec Y$ then be determined. such that

homogeneous, isotropic medium, which is governed by the fo‘%—
lowing equations: (0)=pe(7), (P)=pel—ioW) (10)

Vo=—iwp (1) with

T=peY, P=—iwpeW ) me= pmt d(pr—pmN,  pe=pmt d(pi—pmM. (11)

o\ andM are in terms of the effective material constaptsande,

where V= (d/dx,dldy), o and p are the stress and momentu . . . .
( y), o P and will be determined using a self-consistent model.

density, respectively, withr=(7,,7,)", ¥=(¥xz, 72", W be-
ing the antiplane displacement, apd andp, the effective elastic

modulus and effective mass density of the composite. 3 Self-Consistent Method
Attention will be focussed on a harmonic antiplane wave in the To determineN andM in (9), the self-consistent scheme devel-
effective medium of the form oped by Sabina and Willigs] will be used in the current analysis.

in 0k The strain and velocity fields around a fiber can be approximately
WE(X,y) =wete ®) evaluated by assuming that the effects of other fibers can be rep-
which represents a wave propagation in shdirection, withk, resented by an effective medium. This will then necessitate the
=w\psl e being the wave number of the effective mediumsolution of a problem that a single fiber is embedded in the effec-
Equation(3) represents the approximateffective displacement tive medium with material constanjs, andp, .

field in the composite medium, i.e., Consider now the problem of a single fiber embedded in the

. effective medium subjected to an incident wave given (By
w(x,y)~woe'e, (4)  Following the idea of Willig 9], the stress and momentum density

The effective wave field can be related to the real displaceméit P& generally expressed as
field w(x,y) using a Fourier integration. Multiplying both sides of T= eyt T, P=—lwpWtT (12)

Eq. (4) with e”** and integrating over a representative volume . )
V, the volume average of" can be obtained wherer and# are caused by the existence of the fiber. The result-

ing displacement field is equivalent to that of a uniform effective

) 1 ) medium subjected to body forces and can be represented in terms
<w'”)=w°=v f w(x,y)e eV, (5) of a convolution integral using Green’s function for the effective
v medium,
The averages of other field parameters can be obtained similarly. w=w"+G*F, (13)

Accordingly, the average streés), strain{y), momentum density _ ) L )
(p) and particle velocity —iww) can be expressed in terms ofwhere F=—1/u(Vr+iwm) and G=—i/4H{ (k) is the

average values in the matrix and the fiber as Green'’s function satisfyin 2w+ k2w= 5(r) with H{" being the
zeroth-order Hankel function of the first kind.
() =1= ) (H)m+ &)y ®) Using the constitutive relations of the fiber and the effective

with f representing the stress, strain, momentum density and paiedium, the strain and the particle velocity in the fiber can be
ticle velocity, with subscriptsn andf refering to matrix and fiber, expressed in terms afand 7 as

respectively. Using the constitutive relations of the matrix and the — (. -1 i wm— (. — )1
fiber to eliminate( ), and(—iww),, from the above equations, Y= pe) T —loW=(prmpe) T (4)
following results can be obtained: Making use of Egs(13) and (14), the following relations are
() )+ b ) obtained within the fiber,
0)=pum{Y)t Pl — um(y .
" roam ' (pi—pe) *m+inG*F=—iow" (15)
=pm(—Tow)+ - —iowW);. 8 .
(P)=pml — 1 W)+ $(pr— pm)(— 1 W)y ®) (1= ) Lr— GIF = 7, (16)

The average strain and particle velocity in the fibéys; and

(—iow); can be expressed in terms of that of the effective fielgvhere G7=[dG/ax,aG/ay]". From this equations=[7.,7y,]
ie., and 7 can be determined.

To obtain an approximate solution including the effect of the
Mi=N(y), (—iaw)i=M(—iow) (9) waveformr and 7 are assumed, in the fiber, to be
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0
TXZ
0
Tyz

Since the average displacement and strain of the effective medi
are given by(w™)=wC,(y5) = ¥5,.( ¥y») = 7y, sSubstituting(17)
into (15—(16) and taking the average defined (§), the follow-
ing algebraic equations can be obtained:

T= ek = mlelkeX, a7)

[(pr=pe)+ 0l pl mHi(ikel +1) e tioly per), 2 '

x

= —iww° (18) o
[0 pem®+ [ U 1= pe) = (iKed+ 1)/ el 79, 2/ 1ey,= v, D o

(19) 1 ——- $=0.20, m1 1

. . — ¢=0.05, m2
F oK/ pem®— (KK +Ky)/ pers,+ [U = pe) = Kol el 79,= vy, e 420,10, M2
(20) ——- ¢=0.20,m2

from which 7°, 77, and 7y, can be obtained. In these equations
I, 1;, 3,3, K, andK; are given by

1.4

0.8

1
kR

_ E _ iKe(X1— &1)
| = f f G(x—¢)e 17 dédx (21)
A Jacoae
|-=1J f G(x— g)eke1en (g)dsdx  (22)
I A !
A(x) J S(€)
1 ike(xq— £1)
=% G (x— §)elketa"Ed gdx (23)
AX) J AE)
J:lf f G (x—geke fn()dsdx  (24)
i A Xq [
A(x) J S(¢)
1 :
K:‘f f Gy, (x— e erdedx (25)
A JaxJ e

1 )
Ki=x f f Gy, (x— £)eea"Eny()dsdx  (26)
A(x) J S(¢)

with n; representing the normal direction of the surféoeerface

Fig. 2 Phase velocity for material combinations 1 and 2

Win:WOefkixeik,x (29)

with the real part of the effective wave numbercorresponding
to the phase velocit€ = w/k, of the elastic wave propagating in
the effective medium and the imaginary phytcorresponding to
the attenuation of the wave.

The material constants used in the simulation are

um=173GPa, p,=1200kg/m?)
Fiber 1, u;=8.36GPa, p;=1130qkg/n?);
Fiber 2, u;=4.18GPa, p;=5650kg/m’);
Fiber 3, u;=1.05GPa, p;=141Qkg/m?)

of the fiber,A(x) and S(&) being the area of integration and itsCOr"esponding to material combinations 1, 2, an@n3, m2, and

boundary, defined by +x3<R2.
According to(9) and(14), N andM used in(11) can be deter-
mined:
TO 0
— Xz —
N= (21— pe) 17—0, M=(p;—pe) "

Xz

—iow?’ @7)

m3), respectively.

Figure 2 shows the variation of phase velodywith normal-
ized loading frequencl¢,,R with different volume fractior{¢) for
material combinations 1 and 2 in whidg,=w\pm/my is the
wave number in the matrix. Figure 3 shows the attenuation of the
composite for different frequencies and volume fractions. A note-
worthy feature of the attenuation curves is the presence of a

The effective material constants can then be calculated as

(ff— i) Toz (pi—pm) 7
=Untd-—m 1, =pptp—mr——%. '
Hem bm T @ (=) %, P Pm ¢ (p1—pe) —iwW’ L
I $=0.05, m1
(28) 03 L Y e $=0.10, m1 _
The integralg21)—(26) are very important in obtaining reliable - tg'gg' 212
solutions. Efforts have been made in evaluating these integratic o $20.10, M2
to ensure accuracy and efficiency. It should be mentioned that ——- $=0.20, m2
considering the effect of the waveform in the average process N
given by Eq.(5), the current model provides a consistent solutiol g2 AN i
of the average field parameters by avoiding the usage of exg
average process over fiber distribution, which was usd®jino <
deal with the variation of averaged field parameters with the pi
sition of the fiber.
041 f
4 Results and Discussion
Numerical simulation is conducted to simulate the effective ar
tiplane dynamic properties of fiber-reinforced composites. As e

pected, the solution predicts the existence of complex mater
constantsp, and ue, which result in a complex wave number
ke=k,+ik;. The antiplane wave in the effective medium given
by (3) can then be expressed as
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“resonance” effect at specific frequencies. With the increase of
volume fraction the effective medium shows stronger dispersion
and attenuation properties.

To evaluate the effect of material combination directly, the
phase velocity and attenuation of the composite for material com-
binations 1, 2, and 3 are depicted in Figs. 4 and 5#er0.2. As
the material mismatch becomes smaller, the dispersion and attenu-
ation of the composite decrease, as evidenced by the fact that for
material combination 3 the phase velocity is almost frequency-
independent and the attenuation is much lower than that of mate-
rial combinations 1 and 2.

The prediction from the current method has been compared
with results from other existing techniques for stélete)/
aluminun{matrix) compositeg[7]). The normalized phase veloc-
ity and the specific attenuation capacity e 0.27 are depicted
in Figs. 6 and 7, respectively, whe@eis normalized by the phase
velocity corresponding to zero-frequeney;, and the specific at-
tenuation capacity is defined asrk; /k, . It is interesting to men-
tion that the current result is similar to that given by Kijifi for
low frequencies K,,R<1). Significant difference, however, can
be observed for higher frequencidg,R>1).
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Elasticity Solution for a Laminated a=2Cjje;, 1,j=1(r),2(6),3(2);

Orthotropic Cylindrical Shell 7=Cucve, k=4(rz),5(r 6),6(62). 1)
Subjected to a Localized Longitudinal  The ends are axially restrained but otherwise free to move, i.e.,
Shear Force at z=0L: u,=r,=17,=0. @)

The boundary conditions at the lateral surfaces and the interfaces
K. Bhaskar are

e-mail: kbhas@aero.iitm.ernet.in at r=Rpac o,=7,=0 and r,,=q,

N. Ganapathysaran at r=Rpin: 0r=7=7,=0

. . . . across any interface:
Department of Aerospace Engineering, Indian Institute of

Technology, Madras, Chennai, 600 036, India Ur,Ug Uz, 07, Trz, Trp @re continuous 3)

whereq, stands for the shear force per unit area corresponding to
the applied local loadP. For later usegq, is written in the form of
A three-dimensional elasticity solution is presented for the titfde following double Fourier series:
problem. The solution is in terms of a double Fourier series in the
surface-parallel directions and a power series in the thickness a,= Z E Upn SIN(Maz/L)cosn g (4)
direction. On the basis of this solution, it is shown that the clas- m=13,..n=0,12,..
sical lamination theory is inadequate for this problem because th
steep displacement and stress gradients near the load cannot

captured by it correctly even if the shell is thin. = (2P/72mL.R...)sin(maL /2L ) sin(ma/2):
[DOI: 10.1115/1.1480823 A= (2P/mmbyRngdsinmarL g/2L)sin(m/2);

re

Omn=(8P/ 7 MNLpRyax8,) SiN(MarL o/ 2L ) sin(mar/ 2) sin(n 6/ 2)
for n=1

Introduction andLp and 6p are as shown in Fig. 1.

Of late, there has been considerable interest in the developmenthe above three-dimensional boundary value problem can be
of three-dimensional elasticity solutions for laminated composi&®lved by using the displacement approach as follows. The three
shells. Confining attention to cylindrical shells under static mequilibrium equations with respect te 6-z coordinates are first
chanical loading, one finds that such solutions have been obtaiggressed in terms of the displacememts u,, andu, to yield
for the cases of cylindrical bending due to sinusoidal surface trdéree coupled partial differential equations. Then the displace-
tions ([1,2]), axisymmetric deformation due to sinusoidal as welnents are assumed to vary harmonically in thend z-directions
as band loading[3,4]); and general deformation due to sinusoias
dally varying tractiond([5,6]), pinching loads([7]), and a single B
patch radial load[8]). This sort of rigorous analysis, albeit for (Ur,Ug,U) =h[; cogmmz/L)cosnd,
qertain specifi'c.boundary conditions, layups, and Iqading, is justi- $,codmmz/L)sinng, ¢,sin(mmz/L)cosnd] (5)
fied because it is now well known that nonclassical influences like
thickness-shear and thickness-normal strain are significant fsirresponding to one harmonfce., m,n combination of g,. It
composite structures and that there is a need to quantify the errea® easily be verified that the above displacement variations au-
of classical shell theories against some three-dimensional bentimatically satisfy the end conditiorigq. (3)). They also reduce
mark solutions which automatically account for the nonclassictiie system of partial differential equations to the following ordi-
effects. nary differential equations:

Alook at the literature cited above reveals that all the availabl
elasticity solutions are for smoothly varying or localized radiaﬁcll(fH)ZDﬁC11(§+t)D1—C55n2—sz— CusS*(E+1)%] ¢,
loads. Localized loading transmitted through attachments like sup- 4 [(Coo+ Cy)n(£+1)D;— (Csgt Cop)n] by
port brackets, lifting lugs, nozzles, etc., can result in significant
shear forces besides radial forces, and such forces are often ac- +[(Ciat Caa)S(é+1)?D1+[(Cyz— Coa)(£+1)s],=0
counted for, as for instance in pressure vessel de§®@jh. The )
objective of this note is to provide a baseline elasticity solution for ~L(Csst C12N(E+1)D1+(Csst Cor)n]h +[Cos(§+1)°D>
the case of a localized longitudinal shear force and to examine the _ 2~ 2 2
errors of classical lamination theory when applied to this problem. e £+ 1D1 = Cop™ = Cog= CoeS (611714

—[(CystCeeIns(é+1)],=0
—[(Cya+Cup)S(£+1)2Dy+[(CyatCo) (E+1)S] b,

Formulation and .Sol_utlon | | —[(Cpat CegNS(é+1)bp+ [ Caa( £+1)2D,
An N-layered cylindrical shell is subjected to a shear force 5 5 5
applied in the longitudinal direction, on a small rectangular patch +Cay(§+1)D1—Ceen“— Cas™({+1)]p,=0  (6)

on the outer surface as shown in Fig. 1. The material axes of akqrap =d2/d¢%: D, =d/dé s=mah/(2L): t=2R,/h, where
layer coincide with the geometric- 6-2 axes, so that the stress-g " the mean radius of the shell as shown inOFigi ¢lis a
strain law is given by nondimensional radial coordinate given &% 2(r —Rg)/h.
Comtibuted by the Abplied Mechanics Division ofiE A . The above equations have variable coefficients and hence have
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF ; ; : f
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- to be solved by using power series. The only associated singular

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Auguspomt. is atr=0 (i.e., f: —2Ry/h), and hence a power series
24, 2001; final revision, December 15, 2001. Associate Editor: A. K. Mal. solution about=0 as given by
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Table 1 Axial and circumferential variations of the surface-
parallel stresses

S 7L o,0=0) G 0=0) 1o, (0=0.027)
20 0.48 391.4(0.46) -100.7(0.07) -42.76(0.30)
0.49 214.1(0.43) -61.13(0.06) -77.23(0.20)
050 0.0 0.0 -79.66(0.21)
50 0.48 889.6(0.52) -219.9(0.10) -60.13(0.53)
0.49 380.0(0.61) -129.1(0.10) -102.1(0.39)
050 0.0 0.0 -103.3(0.41)
100 0.48 1626.(0.57) -383.6(0.14) -88.10(0.72)
0.49 578.1(0.80) -214.8(0.14) -135.9(0.59)
050 0.0 0.0 -137.0(0.61)
Fig. 1 Geometry and loading 500 0.48 6739.0.70) -1094.(0.40) -307.0(0.99)
0.49 2158.(1.10) -743.7(0.33) -378.3(1.00)
* » 0.50 0.0 0.0 -392.3(1.01)
¢i= X EH(j) fori=r.0, )
j=0,1,2...
would be convergent at every point in the shell domaifi< & S 0Or 0, (z=048L) o, (z=0.481) 1o, (z=0.5L)
<1. The methodology for finding out the coefficienis(j), 20 0.00 391.4(0.47) -100.7¢(0.07) 0.0
H,(j), andH,(j) is straightforward([10])—substitution of Eq. 0.01 362.0(0.48) -88.45(0.07) -18.88(0.32)
(7) in Egs.(6) and equating the coefficient of each powerédb
6
Hr(j),H(,(j),HZ(j):Z G(K)[d,(j,k),dy(j,k),dy(j,k)] (8) 50 0.00 889.6(0.52) --219.9(0.10) 0.0
k=
hereG(K) ) det ' ined tants ahdj k), et 0.01 837.9(0.52) -203.7(0.10) -18.92(0.80)
where are six undetermined constants j,k), etc., are
known quantities obtained using recurrence relatigtd]). For 0.02 535.1(0.48) -93.46(0.14) -103.3(0.41)
the sake of brevity, the recurrence relations are not given here.
Equation(8) is applicable for any particular layer, and hence, R
for the N-layered shell, there would beNsunknowns. These are 100 0.00 1626.0.57) -383.6(0.14) 0.0
determined by enforcing theh6lateral surface and interface con- 0.01 1528.(0.57) -340.9(0.15) -30.61(0.93)
ditions (Eq. (3)). 0.02 939.90.55) -137.1(0.23) -137.0(0.72)
Results and Discussion :
A (90 deg/0 deg/90 degshell with L/Ry=4 is considered for 500 0.00 6739.(0.70) -1094.(0.40) 0.0
numerical studies. The material properties, typical of high- 0.01 6279.(0.71) -940.5(0.41) -125.4(1.12)
modulus graphite-epoxy, are taken as 002 3462.0.71) -90.32(2.27) -392.3(1.01)

E|/ET:25 GLT/ET:O.S GTT/ET:0'2

o, at &= 1/3(0° layer);op at E=-1; 74 at &= 1.
Values in brackets are CST results normalized
with respect to corresponding elasticity resullts,
i.e. (CST result/Elasticity result).

VLr=Vr1™ 0.25.

The patch size is taken to de,=0.04. and 6,=0.047. The
results are presented in terms of the following nondimensiona.
parameters:

U =E Rou;/P for i=r,z

sical lamination theory based on Love-Kirchhoff hypothesis—the
actual shell theory employed is that in which no further assump-
tions besides Love-Kirchhoff hypothesis are made, commonly re-
For any harmonic, the number of terms taken in the Taylor’s seriémred to as generalized Langhaar-Boresi théft?]). The corre-
is such as to obtain four-digit convergence of the results; the nusponding solutions are based on the well-known Navier approach
ber of harmonics considered is such that an increase,@f or with assumed harmonic variations of the displacements for each
Nmax DY 10 does not affect the final results by more than 0.5%.harmonic of the load, leading to simple algebraic equations which
Table 1 presents the variation of the surface-parallel stressedlirectly yield the displacements. The harmonic variations in the
the close neighborhood of the patch in both the axial and circuraxial and circumferential directions are the same as in (Bg.
ferential directions. These are presented at criti€alalues at Results convergent upto four significant digits are obtained by
which the stresses reach high magnitudes. It should be noted thatnming the harmonics; in Table 1 they are presented in normal-
o, ando, are antisymmetric about=L/2 while 74, is symmetric; ized form with respect to the corresponding elasticity values.
similarly abouté=0, o, and o, are symmetric whiler,, is anti- From Table 1, it can be seen thaj is predominant compared
symmetric. Table 1 also includes values calculated using the clés-the other two surface-parallel stresses, which are, however, not

(oF ,75)=R4(0i,mj)/P for i,j=r,0,z.
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negligible. CST errors decrease with increadtygh (denoted by
Shereafter as can be expected, but the errors are significant even
for thin shells withS=500. Further, CST predictions are much
worse foro, compared to the other two stresses. Plots of the axial
variations ofo, ando, are presented in Figs. 2 and 3, which show
that steep stress gradients occur close to the load patch as can be
expected. The CST predictions are close to the elasticity values
away from the load patch, but start diverging as one approaches
the load.

Axial variations of the displacements andu, are presented in
Fig. 4. These displacements are antisymmetric and symmetric,
respectively, with respect to midspan. One can notice sudden
steep gradients of both the displacements near the load, which are
not captured by CST. This can be explained as follows. The ap-
plied loading—a shear stress,—results in nonzero shear strain
v, & strain totally neglected in CST. This strain depends on two
displacement gradientsu, and u, ,—and hence, it should be
expected that botlu, and u, cannot be accurately predicted by
CST. The displacement errors directly translate into erroneous
predictions of the various stresses.

Finally, Fig. 5 presents the decay gf through the thickness at
the center of the load patch. This shows that the decay pattern is
more or less identical for all values @& and that significant
transverse shear occurs in the top two layers.

Conclusion

A baseline elasticity solution has been obtained for a cross-ply
cylindrical shell subjected to a localized longitudinal shear force.
The results presented show that steep stress-gradients occur close
to the load and that a classical shell theory based on Love-
Kirchhoff hypothesis is inadequate to capture these gradients cor-
rectly.
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Mathematical Model
The present flow is a steady slow flow and the constitutive

Bubble Shape in Non-Newtonian equation considered by Chan Man Fong and De Kg is ap-

) propriate. The chosen constitutive equation can be written as
Fluids
7':_7]0(1_&0“)7(1)_0117(1)'7’(1)_0127(2) 1)
D. De Kee and C. F. Chan Man Fong where 7 is the extra stress tensoy;y and y, are the first and

. . : . .. second rates of deformation tensors, respectively, as defined in
Department of Chemical Engineering, Tulane University, Bird etal. [12]: 70, @y, @y, and a, are constants and Ii

New Orleans, LA 70118 =try(21).

We consider a two-dimensional flow in the usygly) plane
J. Yao with velocity componentsu, v). The fluid is incompressible and
Department of Physics and Reengineering, Xavier we introduce a stream functiofi(x,y) defined as
University of Louisiana and Tulane/Xavier Center for o o
Bioenvironmental Research u= VT T (2)

Combining Eqgs(1) and(2) yields the stress components, ,

The study of the behavior of bubbles in complex fluids is of induse » andy, and they are given by
trial as well as of academic importance. Bubble velocity-volume 2 { o Py
2

relations, bubble shapes, as well as viscous, elastic, and surfac- . — -7
ay ax2ay

Y
=—270(1— agll) ———— a1(V?¢)*—
tant effects play a role in bubble dynamics. In this note we extend 701~ oll) IXay (V) =z

the analysis of Richardson to a non-Newtonian fluid.

3 2 2 2 2 2
[DOI: 10.1115/1.1480822 L, Y _4( TN, TU T TV g
X Ixay? | axay ay? \ ay?  ox?

2 2 3 3

Introduction Tey=— Mo(1— all) Z_y‘é’, ‘;?‘1’) - 2[(;_;//’ (%r Z_)(‘é’)
The motion of bubbles in non-Newtonian fluids is of consider-
able importance and has attracted a lot of interest in the past few (Y Py >y,
decades. De Kee et dl1] have recently reviewed this topic. One - 5( oy axzay) +2 X3y (v lﬂ)} (30)
of the outstanding problems in this area is the experimental ob-
servation of an abrupt jump in the terminal velocity of a rising A ay Py
bubble in some non-Newtonian fluids at a certain critical volume.  7yy=270(1— aoll) XY a1 (V)2 —a, Za_x X2
It is now generally accepted that viscoelastic effects as well as y y
2

surface tension are among the factors that contribute to this jump ay Py PP Py i
discontinuity. Rodrigue et a[2,3] have proposed a few criteria, _ZW X2y + W(a_yz_ W) —4( ) }

based mainly on dimensional analysis, that have successfully pre- Xy

dicted the existence of the jump discontinuity. (3¢c)
This jump discontinuity has also been associated with the shape 22
of the bubble. Liu et al[4] have proposed that the jump discon- =2(V=4) (3d)

tinuity occurs at a critical capillary number when a cusp is Su%herevz
denly formed at the tail end of the bubble. The sudden transition
from rounded to pointed end of a bubble rising in a fluid was

is the Laplacian.
The equations governing creeping flows can be written as

observed by Rumscheidt and Mag&h but no jump discontinuity ap ITxx  OTxy
in the velocity was reported. Further comments on the criterion X 7( I F ) (4a)
proposed by Liu et al.4] are given in Rodrigue et a3]. y
The formation of a cusp on the free surface in flows at low
ap ( I7yy afyy) ()
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ay X ay
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, AugusWherep 1S .the pressure. L .
29, 2001; final revision, March 4, 2002. Associate Editor: D. A. Siginer. Combining Equation$3a)—(4b) and eliminatingp yields
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Jl o Jll o end is a true cusp. However, it is beyond doubt that the jump
770[ (1= ag)V¥—ag| 2 iy (V24h)+2 X o (V%x) discontinuity is related to the existence of a pointed @nee cusp
y oy X oX or noY and any attempt at explaining the jump discontinuity needs
5211 (921/, 2l 92 ,92¢ ,92¢ to take intp account the nonsphe.rical shape of the bubble. As
4 X3y X3y + ( Py A ( Y2 ﬁxz) ] stated earlier the existence of a pointed end is a necessary but not

sufficient condition for the occurrence of a jump discontinuity.
ap ay 9 JosepH14] reported that in non-Newtonian fluids cusping oc-
—— = V= — —V4l/f} =0. (5) curs suddenly whereas in Newtonian fluids the transition to cusp-
ing is gradual. This observation may partly explain the jump dis-
In the case of a Newtonian fluidap=a;=a,=0), Eq.(5) continuity. De Kee and Chhabifd4] did not observe a sudden
reduces to a biharmonic equation agds given by Richardson cusp formation and from their figures we are led to believe that

[6] the change of shape is gradual.
. The role of shear thinning on the shape of the bubble needs
y=Rez¢(2) +x(2)) ©) further examination. Based on a qualitative analysis, Chan Man

where Re denotes the real part=x+iy) is the complex vari- Fong and De Ked11] concluded that elasticity will deform a
able, the bar denotes the complex conjugétend y are analytic spherical bubble into a tear drop shape whereas shear thinning
functions ofz will deform it to an ellipsoidal shape. We need to extend the
Equation(5) is a nonlinear equation and is difficult to solve. Wepresent analysis to include, .
consider the simpler case af,=0. This implies that the viscosity = Hassagef15] has observed a negative wake behind bubbles in
of the fluid is constant. non-Newtonian fluids. This implies that there is a considerable
De Kee et al[13] have shown that the jump discontinuity canelement of extensional flow around the bubble and this will en-
not be attributed to the shear thinning effect. Thus putting hance the formation of a cusp. It is also relevant to note that in
=0 is probably not a serious limitation. It can be seen that in thRichardson’s analysis, the flow is in the negatixelirection
case, i as given by Eq(6) is also a solution. Further, using thewhich corresponds to a negative wake.

theorem of Tanner and Pipki{i12]) gives the pressurp as At present the empirical criteria proposed by Rodrigue et al.
[2,3] seem to be the most appropriate to use to determine the

p=pn+ @2 Rp +(ﬂ_ 2) I @) existence of the jump discontinuity. The jump discontinuity is a

o Dt'N 12 4 stability and bifurcation problem and it is not easy to solve such a

complex free-surface problem.

The above analysis shows that the formation of a genuine cusp
is possible for both Newtonian and second-order fluids. It seems
very unlikely that the jump discontinuity in the bubble velocity
can be attributed to the cusp formation. It is most likely due to a
pn=—4n,IMm[¢'(2)] (8) discontinuity in the surface forces, as pointed out recently by
odrigue and De Ked16]. A study of the convection of
tfsorbed surfactants at the surface would also be desirable.

wherepy is the pressure for a Newtonian fluid abdDt is the
material derivative.

The pressurepy is given in Richardsorf6] and can in our
notation be written as

where Im denotes the imaginary part and the prime denotes
derivative with respect to the argument.
Noting that¢ and y are analytic functions, we can deduce that

V2y=2¢"; (9a) References
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W O’;_Xf X Polymer Processing Technolaghy. P. and P. N. Cheremisinoff, eds., Marcel
Dekker, New York, p. 87.
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Filled With a Viscous Liquid
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Fudan University, Shanghai 200433, P. R. China a procedure introduced by Greenspan, where not all the boundary
conditions were satisfied. Holm-Christensen andgérd5] di-
rectly used the full Navier-Stokes equations and solved them nu-
merically, the procedure is rather time-consuming and sensitive to

By means of the obtained explicit expressions of dynamic fora@g initial guess.

acting on a rotor partially filled with a viscous liquid, the equa- |n this paper, the explicit expressions of dynamic forces acting

tions of motion are derived. The corresponding eigenvalue pron a rotor partially filled with the viscous liquid are used and the

lem is solved accurately in correcting to the first order of magnidynamic stability of the coupled system is discussed. The equa-
tude ofRe % Dynamic stability of the rotor is studied in detail tions of motion are obtained. The corresponding eigenvalue prob-
and some valuable results are obtained. We can regulate then is solved accurately in correcting to the first order of magni-

stable interval so long as we properly choose the value of externghe of Re 2

damping. [DOI: 10.1115/1.1458553
2 Dynamic Analysis of the Rotor

. A rigid cavity rotor is mounted symmetrically in the middle of

1 Introduction a massless elastic uniform shaft supported by two identical bear-

Here the perturbed motion of a spinning rigid rotor filled parings at the shaft two ends. The rotor spins at a constant(ate
tially with a viscous liquid is studied. The problem is of technical he flow in the rotor is assumed to also be of plane motion. The
importance to fluid-cooled turbines as well as to spin-stabilizdiked Cartesian coordinate systems yz and the spinning Carte-
satellites or rockets containing liquid fuels. sian coordinate systents-¢# are showed in Fig. 1. The super-

Unfortunately, the above-mentioned perturbed motion of tHeposed disturbed motion of the center of the rotpis assumed
fluid-structure coupled system is somewhat unstable over soteebe a small whirl motion with angular speed Referred to the
spinning ranges. Stability of a rotor partially filled with an invisfixed coordinate system, the disturbed motion of the poidn be
cous liquid has already analyzed. Wélf] and Kuipers[2] ana- described as
lyzed undamped and damped rotors, respectively. Zhang, Tang, —Agot g Aot )
and Tao[3] gave a further general discussion on this topic and Ye=R1€ T, ZeT A2
obtained some more general results. Up to now, however, a rotanere A; and A, are complex parameters and may be unequal.
partially filled with a viscous liquid has not been discussed exteSupposingF, andF, are the dynamic forces acting on the rotor
sively. Hendricks and Morto4] analyzed a circular whirling by the perturbed liquid, we ha¥@ao and Zhang6], also see the
motion of the rotor and gave the viscosity correction by means 8fppendix

F,l 1 Mi+Mate(1-i)(KitKy)  —i(My—=Mp)—e(1+)(Ki—Kp)|[A,]
Y= = paZw?m| . . ) lgiot @)
F.l 2 i(M;—My)+e(l+i)(K;—Ky) Mi+My+e(1—i)(K+Ky)  [[A2
[
where bothF, andF, are complex, and 3
0’+ 5 (2(0*0)*—w?)
2(0*0)?— w? ]2 o2 b
ML= T ez )~ o?” Kiz= Vg (o=@ 2.
( ’)/)((U_ ) w w2+F(2(a)iQ)2—w2)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- a’w a’+p?
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 18, ¢=(Re)” 2, Re= 0 . wo=(kImR)¥?,  y= -
2000; final revision, Sept. 26, 2001. Associate Editor: D. A. Siginer. v a‘—b

Journal of Applied Mechanics Copyright © 2002 by ASME SEPTEMBER 2002, Vol. 69 / 705



Even if o—Q=0, K, can also be determined as zemg, andk are {mc[Mj+s(1*i)Kj]erR}wz*iCew*k:O (4)
the mass of the rotor and the rigidity of the flexible shaft40,

then Re-x, therefore(2) will degenerate into the result of the (j=12 (5)
inviscid case. herem.= pa?w denotes the mass of the liquid needed to fully
Taking the external dampin@. into account, the equation of i fill the cavity. Introducing the following nondimensional

motion of the rotor, in the fixed coordinate system, is parameters
m y F m Q C
i Y +[ ° }3-“ Vel B m=—%, A= —, §=—, C=>—°—,
Mgl Zc CellZe k|lZc z mg wq [OF) 2MRwg
Substituting(1) and (2) into (3), we get the characteristic equa-(4) and (5) can be reduced to the follow characteristic equations
tions as of \:

2l N2+ %(2(& x)z—xz))

(L4 )(SEN)?=\?)

5 (SE))
ml e(1-1)\/1 g

+ 1 2
(x2+§(2(sm)2—>\2)>

+2(SEN)2= N2+ ((1+ ) (SEN)2—=2A?) p N2—(2ICA+1)((1+9)(SEN)?2—A%)=0 (6)

where the positive and negative sign correspond ¥djrand(7),  sively. Figure 2 shows the numerical resultsagf,,~S The value

respectively. S=S, is corresponding tav,,,=0. It is obvious that the lower
All the discussions in the paper are based only on the first ordggin regionS<S; is the stable region. The smaller the external

of magnitude ofs (Tao and Zhang6)), therefore thex in (9) can dampingC, the larger the stable region. However, there is no

be written as stable region when the Re is beyond the value<28’.
N=Ag+e\;. @) It is worth showing the results of Re2.5x 10*. First, taking
C=0.005, 0.01, there are two stable intervals in the low and high
Substituting(7) into (6), we get spinning regions separately. Figure 3 shows the high cases. When

4 . 3 > C=0.002, however, the stable interval in the high-spin region
(M+y)ho+(£25(2m+ y+1) = 2iCy)ho+((2m+y+1)S°- disappears. whileC=0.45, however, the stable interval in the
T4ICS(1+y)\2—2(1+7)S(ICS+ 1)\ g— (1+y)S2=0  low-spin region is minimum $,=0.938). This means that if the
value of C increases or decreases, the stable interval will always
(8) extend (Fig. 4. However, it extends whelC decreases in the

and result of Hendricks and Morto#] and the case is on the contrary
) 5 in the result of Christenson and ‘fer [5].
[(Zm+y+1)(E=S+Np)"—(M+1)AG]12NoN 4 The characteristic Eq$6) can be derived, and it becomes very

easy to discuss the dynamic stability of a spinning rotor partially

+[2(2m+ y+1)(+ S+ A1 = 2(M+ XoM]AG filled with viscous liquid.

+(1—=i)MF=(2iCN\p+1)(2yAgN1=2S(1+ y)N\ 1) 1. The form of the characteristic Eq€) seems rather com-
_ o + ) (+ S+ A 2—\21= plex, there are on_Iytwo_ fourth-order algebraic equations a_nd
ZACMI(L+7)(=STho)"~X5]=0 ©) they only have eight eigenvalues to evaluate in connecting
corresponding the power® ande, respectively, in which with the first order ofe.

+ %(2(t5+)\0)2—>\5))

[ Re=2.5x10°

\/T (Ao=8)%| N
F=Vxy=s

1 2
(xg+ p3(2(=s+ M)z—Ag))

X[(1+y)(=S+Ng)2— N3]

There are two algebraic characteristic equations with fourth order
in (8) and(8) has eight eigenvaluegy;j(j=1,2...8) inall. Ay

then can be obtained fron®). For any givenS, if the a.y
=max[Re()\;)]<0, the rotor with spinning rat& is stable.

3 Results

For comparing with previous resultslendricks and Morton,
[4] and Christenson and Tgar, [5]), the same values of param-
etersm=0.206,b=0.67, Re=2.5x 10° are used. The damping Fig. 2 When Re =2.5X10°, ay varies with S. The stable in-
values are taken &=0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6 succegervals in the lower span speeds are shown.
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2.0 .
Re=2.5x 10 =0, %?=0 (A2)
(r=1) (A3)
1 (91,//_ an
b7~ 7t (A4)
(r=b) (A5)

where 7 is the deviation of free surface. The pressure boundary
conditions are taken as

Fig. 3 When Re =2.5X10*, ay,. varies with S. The stable in-

tervals in the lower span speeds are shown, but those in the 1 (1 au dv v 2 du

higher speeds are not shown. Pro=RelT 90 ar F) =0, pn=-p+t Rear =0.
| (A6)

] ~_pin (A6) can be eliminated with the equation of circumferential

2. Taking the larger Reynolds numberR25x 10°, the liquid  motion. Finally, we obtain
appears almost inviscid. In this case there is only one stable
interval in the low spin region. While Re2.5x 10%, how- _v. -2 =
ever, the liquid appears somewhat viscous and another stable ator b 96 bop Re
interval in the high spin region occurs. 3 )
3. When Re=2.5x 10, the stable interval in the low spin re- 3 Yy Ay 1y
gion can be at minimum if the value of the external damping b2 96%9r b 96°> b2 or
is properly chosen.

Py 209y ol 1 Py 1Py
b 96 ar® b ar?

) (A7)

wherell is the potential of the inertial force taken as
L= — L ei(t+o+Qt L o=i(t+0+Q) 4 gi(t=0-Q) 4 o=i(t=6-Q) |
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With the boundary conditio , A3, A4, A5, andA7), can be
A Brief Derivation of Eq. (2). Consider the transverse mo-gpisined as y N2 ) ¥

tion of the rotor in they-direction only, i.e.,

Appendix

=Ae',  z,=0 —— 1 A+) 1+i)N o1
Ye 1€, c ¢1_4N+M+ N, 2 (1+1)Ny 2 r
and nondimensionalize the velocity By o, the time by 1k, the 1 301
angular speed by, the length bya, the pressure byaAw?, + 2| (A+D)N, = = | =41 Y2E_(1)E, (r)|etror0n
wherep is the density of the fluid, and is the inner radius of the 2 2)r

rotor. Introducing a perturbed stream functignthen the equation
of motion of the viscous fluid in the rotor is

AAY) 1 # 1o 1 ¢
ot —R—eAAl!FO A:W+ Fﬂ_r+r_2W . (A1) carrying the same procedures for the remaining terms on the
right-hand side of(A8), ¢,, 3, and ¢, can also be obtained,
Stokes numbers is Rea?w/v. The kinematic boundary conditions respectively. The stream function is then taken as

are taken as
U=+ ot Pyt iy
Next, consider the transverse motion of the rotor in the

where
E+(r):etN+rti(N+r—w/4)

1.03 direction:
" - 4 o
Re=2.5x10 Ye=0, leAzel t
1.0 after a rather lengthy deduction, formu®) is derived.
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Dynamic Stability of a Flexible Cartesian coordinate systeai—x'y’z’, the rotating Cartesian
coordinate systero—xyz with spinning speed) aroundz’ -axis

Spmmng Cyllnder Partla”y Filled and the corresponding cylindrical coordinate systemroz,

With Liquid wherez andz’ -axes coincide with the undisturbed spinning direc-
tion ando is the middle point of the cylinder. During the whirling,
liquid also undergoes a perturbed motion. bet, andw be the

M. Tao relative perturbed velocities of the liquid in the 6, z-directions,

Professor respectively; in the cylindrical coordinate system-roz, F,,
Fy, and F, are the inertial forces in the, 6 and z-directions,
respectively.

W. Zhang F,=w0?5cog(Q—w)t+6],

Professor, Mem. ASME F,=w28si(Q—w)t+6], F,=0

where the whirl deflexion curve of the cylinder is denoted as
8(2) (6<a).

The problem of three-dimensional flow in the cylinder should
be simplified because it is very difficult to solve exactly. Let us
first estimate the order of magnitudes of every term in the equa-
Dynamic stability of a flexible spinning cavity cylinder partiallytions by nondimensional procedure. The order of magnitudg of
filled with liquid is discussed in the paper. The cylinder is assumedis the same as that of cylinder perturbed motitvm, whereA is
to be slender. Choosing characteristic quantities and estimatirgtypical value of5(z). The order of magnitudes of, on the
the orders of magnitude of all terms in the governing equatioher hand, is the order dwa/L. This is due to the fact that the
and boundary conditions, the three-dimensional flow in the sleftder of magnitude of the longitudinal displacement of the liquid
der cylinder is reduced to a quasi-two-dimensional flow. Using tHé the same as that of the longitudinal displacement of the cylin-
known formulas of a two-dimensional dynamic force acting on tifker. We introduce the following dimensionless quantities denoted
rotor and regarding the slender cylinder as a Bernoulli-Euleiy an overbar:
beam, the perturbed equations of the liquid-filled beam-wise cyl- aho -
inder are derived. The analytical stability criteria as well as the (| 3y = (u,v)/Aw, w=w/—, (r,b)=(r,b)/a, z=2z/L
stability boundaries are obtained. The results further the study of L
this problem. [DOI: 10.1115/1.1458554

Department of Mechanics and Engineering Science,
Fudan University, Shanghai 200433, P. R. China

(5 M=(87IA, t=tw, Q=0lw, p=p/pado?

— — — aA w?
1 Introduction (Fr.Fo)=(F,,Fp/Aw? Fo=F./——

Dynamic st§b|I|ty of a rotor.parnally filled with liquid has al- Substituting the above expressions into the related equations, we
ready been discussed extensively, however, there are few papers,

in the literature dealing with flexible spinning cylinders. The rea-

son is that the flow in the deformed cylinder is three dimensional. gu A (_ou _du v?| aA_du — — dp
Dynamic pressure of the liquid is effected by the cylinder deflec- EJF 2 uc?_r_ﬂ}ﬁ_e_ T + FW&_?_ 2O =F,— ar
tion. It is difficult to obtain analytical formulas of the dynamic @

force acted on a cylinder by a liquid. Crandgll] discussed the
problem first by giving an outline of the problem only. Zhd2g v A
studied the problem in greater detail, but the cylinder is com- —+ =

pletely filled with liquid and then no free surface should be con- atoa

_dv _dv u)| aA_dv ST E ap
U—+v—+ — |+ -—W—+2Qu=F ,— —
a UTae T L2 " oz Y roe

sidered. In this paper a fresh start is made. By virtue of the esti- 2)
mation of the order of magnitude of all the terms in the equations, ow A[_ow _ow\ aA_dw — Ip
the three-dimensional flow is then reduced to the quasi-two- WJr a Uﬁ—r—JrUr—ﬁ—19 + Vo= 5 (3)
dimensional flow mathematically because of the slender feature of
the cylinder and its small deflection in practice. Thus the problem Ju u dv a’ow
is greatly simplified and a series of analytical results are obtained (9—r—+ F_JFE?_B + 2 (9—?:0. (4)
in this paper.

Then the following conclusions are obtained fréi—(4):
2 Simplification of the Problem 1 If the cylinder is slender, the ratia®/L2<1, all the terms

Oincluding derivatives ofz in (8), (9), and (11) can be omitted

A uniform slender cylindrical cavity rotor is simply supporte . i
4 y ply Supp mpared with the other terms. Only v, andp remain in Egs.

at its two ends as shown in Fig. 1. The length and inner radius -
the cylinder are R anda, respectively. The cylindrical rotor is (&) (9), and(11) and the problem is reduced to a plane one. After
partially filled with liquid in the cavity. The rotor spins at a con-Us U+ @ndp are solvedw can then be obtained from EGLO).

stant speed) without perturbation. The contained liquid is uni- 2 For a small perturbed motios=A/a<1, all the nonlinear
formly attached to an inner wall under the action of centrifugderms in the above equations can be neglected, and the problem is
force and synchronously spins as a rigid body with the séime reduced further to a linear problem.

The inner radius of the steady spinning motion of the solid-fluid The next step is to simplify the boundary conditions. During the

C(.)umed. system. Thus a S”?a” perturbeq whirl motipn of thg rotQlhir| motion, the equation of the deformed side surface of the
with whirl speedw is superimposed on it. Introducing the f'XEdcyIinder partially filled with an inviscid liquid can be written as

r=a+§&(60,z,t). Its normal vector is

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- 9E ¢
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 18, n=-1,—,—|.
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Fig. 1 Analytic model

Hence the boundary condition on the surface is In a stable case, this force and the centrifugal force caused by
3 3 whirling motion of the flexible cylinder together balance the elas-
—U+v % +w—§ =V, tic force of the flexible cylinder, i.e.,
a0 Jz
El5% = prArw? 6+ mM,w?s @)

whereV,, is the normal velocity component of the corresponding ) ) ]
point of the cylinder. The corresponding nondimensional boun#therepr andAg are the density and sectional area of the cylinder,

ary condition is respectively. Equationl6) is a linear ordinary differential equa-
— — tion of § rather than a complex nonlinear equati@randall[1]
_ A_9¢ aA_oé and Zhand2]). This is due to the simplification of the quasi-two-
Ut Jvent W=V, /Aw (3)  dimensional model.
The boundary conditions of the bending curve are

where ¢=¢/A. The third term of the left side can be omitted . o

compared with the other terms becaws¥L?<1. And V, can o(=L)=d"(xL)=0. (®)

also be substituted with velocity projection on the-xy plane. Only for some special valuggigenvalues (7) has nonvanish

Then(5) is altered to the boundary condition of a plane problensolutions(eigenfunctions Equation(7) has a general solution

The boundary conditions the inner free surface and the two end ) )

faces are discussed in like manner. 8(2')=c4 cosKz' + ¢, sinKz' +c5 coshKz’ +c, sinhKz'
Summarily speaking, the flow pattern of the liquid in the cylyhere

inder with small deflexion can be described as a quasi-two-

dimensional flow on any section of the cylinder. Thus we can use 4 PRARTMM,

the formulas of two-dimensional dynamic force of a liquid - El w- ©)

(Zhang, Tang, and T&@]) to analyze the dynamic stability prob- . o

lem of the flexible spinning cylinder partially filled with an invis- Substituting the above general solution i1i&, we have

cid liquid. cosKL sinKL  coshKL  sinhKL e
cosKL —sinKL  coshKL  —sinhKL C, 0
3 Dynamic Stability cosKL  sinKL  —coshKL —sinhKL || C3 '
Assume the components of the dynamic force density of the | COSKL ~ —sinKL  —coshkL  sinhkL | * 10)

liquid acting on the cylinder ar€, andF,, respectively, in the
fixed Cartesian coordinate systeai—x'y’z’. Thus we have After some simplification, it is
(Zhang, Tang, and Ta8])

Sin 2KL=0.
Fy=mw’M,8(z')coswt  Fy=m.w’M,5(z')sinwt Hence
where nr
KnL=7 (n=1,2,...).

20— w)%— w? ~a’+b?
(1+ ')/)(Q—w)z—w2 Y= a?—b?)"

me=pma? M,=

©) Ifn=1, K;L=m/2. Fro.m(l_g) we havec,=c3=c,=0. The cor-
responding eigenfunction is

The resultant force density is

a

P(z')= \/FX§,+ Fyz, =mw?M,8(2"). <p1(z’)=c052|_ z'.
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This is a symmetrical whirl mode, and the flexible cylinder isvhere a=y+2u+1. AssumingF =S, it corresponds to synchro-
deflected as a bow. Ih=2, K,L=m. We havec;=c3;=c,=0. nous whirl motion. From(14), the first critical speed is obtained
The corresponding eigenfunction is as

(Z,)isinwz, @ 1 0 x\2 [ 2EIL
#2 L™ 1 OF Sera=| 51 Mgp+M¢'

This is an antisymmetrical whirl mode, and the flexible cylinder is For asynchronous whirling, curwe~ S of the flexible cylinder
as an S-form. Its middle point is a nodal point. can directly be referred to the Wolf’s resulf#]). The instability
For the symmetrical mode, froif9) we have region of a spinning speed B,<S<B,. The lowest threshold
4 speed of the system iQ,=B;wo=B(w/2L)?2EIL/My. By
™ prART MM 1oL
=== < i values of u and v, the liquid influences the value d@,, and
2L El therefore the value of2,, too.

In order to compare this with the result of W¢H]. The total 4 Conclusion
length of the flexible cylinder should be taken alternatively Bs 2

The above expression thus should be rewritten as We came to the following conclusions:
) o4 1. When the slender rati@?/L?<1, the three-dimensional flow
2L(prARTMM3)w1=2| > | EIL. (11) in the cylinder can be approximated by a two-dimensional
2L
flow.
For a rotor, Wolf’s result is 2. Using this model, the dynamic stability of a thin cylinder
2 partially filled with a viscous fluid can also be discussed
(MrFMcho=k (12) analytically on the basis that the two-dimensional dynamic
wheref equalsM, in (6), andk is the rigidity of the shaft on force of the viscous fluid acting on the cylinder has been
which the rotor is mountedlg and M are the mass of a solid obtained.
rotor and the mass of liquid fully filled, respectively. Comparing
(11) and(12), we have Acknowledgment
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the Bueckner Work-Conjugate Iherefore. fom E£qs2) and(8).the diso ()_
” H H H ererore, from 2) an , the displacement components In
Integral” (Shi, J. P., Liu, X. H., and Li, gq (3 ean be exprossed as P P
J., 2000 ASME J. Appl. Mech., 67,

Ju

pp. 828-829 2G(u<">+iv<”>):2G(y i—iﬂj—i)—x(j—;ﬂi—;))
Y. Z. Chen =r{—ize' (2} +Zi(¢'(2)—2¢"(2))}
Division of Engineering Mechanics, Jiangsu University, —izy'(2). (6)

Zhenjiang, Jiangsu 212013, P.R. China
From the fact that

K. Y. Lee _
Department of Mechanical Engineering, Yonsei _i{_izq,r(z)}: —i(0(2)+7¢"(2)) #i(¢' (2)-Z¢"(2))
University, Seoul 120-749, South Korea dz @

o and the rule mentioned above, the displacemestts and vV
Three wrong expressions in the pajEt]) have been found. shown in Eq.(2) are not an elasticity solution. Therefore, the

Equations(4) and (5) in the paper are written in the forms displacement shown in Eq2) is also a wrong expression.
Y Y —, 3 In Eq. (3) an indefinite integral is used to express the stress
¢ (2)=—i¢'(2), ¥ (2)=-izy'(2)+2iz¢'(z), (1) components. In the continuum medium of elastic body, the inte-
an gral should be path-independent. Also, it is well known that if a
Ui/ = YU = XU y (2)  function F(x,y)
an_ 1 1 . (x,y)
oij =YOijx~X0ijy T 5 [ oijdy= 5 | oydx (1,j=1,2). F(x,y)=J p(x,y)dx+q(x,y)dy 8
(Xg:Yo)
(3)

1 Complex potentials suggested by Muskhelishvili should be &) & path independent integral, the following condition must be
analytic function([2]). However, since the argumenis involved  Satisfied:
in the second term of{'"(z) in Eq. (1), ¥("(z) cannot be an

a_nalytic function. Therefora)(")(z) in Eq. (1) is a wrong expres- IP(Xy) = 9q(x.y) or (7q(x,y)_ IP(X.y) =0. 9)
sion. ay X X ay

2 In the complex variable function method, the displacement o
components can be expressed[a3) If Eq. (3) were true, substitutingp(x,y)=—oy;,/2 and

q(x,y) = 0ij «/2 into Eq.(9) yields the following:
2G(u+iv)=ke(z)—2z¢'(2)— (2) 2 2
. . J a-ij d O'ij
=ke(2)+2{~¢'(2)} = i) @) e T O (10)

whereG is the shear modulus of elasticity=(3—v)/(1+v) is : .
for the plane stress problems,=3—4v isfyfor( the )plgne s)train However, the stress c(ﬁ)mponerat§ are not _a harmonic function
problem, andv is the Poisson's ratio, and(z) and ¢/(z) are two N 9eneral. Thus, ther; shown by Eq.(3) is also a wrong ex-
analytic functions. pression.

Equation(4) reveals a rule that in a real displacement expres-
sion of plane elasticity, if the function after the elastic constant
is ¢(2), the term aftez in Eq. (4) should be—¢’(2). References
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2G| —+i—|=(ko' (2)— @' (2))— (20" (2)+ &' (z [2] Muskhelishvili, N. I., 1953 Some Basic Problems of Mathematical Theory of
X X (k¢'(2)=¢"(2)) = (z¢"(2) + 9" (2)) Elasticity, Noordhoof, Dordrecht, The Netherlands.
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. o —
of Classical Metal Plasticity Vaterial . b ol
(Wilson, C. D., 2002, ASME J. Appl. 20047351 sl o0 T 5
MeCh" 69, PP. 63'68) Aged?nL;Taltgiunn;[st]e)e{[l]) 0.037 1833 20

C. J. Lissenden
Department of Engineering Science and Mechanics,

The Pennsylvania State University, 212 Earth-Engineering The pressure-dependence of 1100 and 2024-T351 is similar, but
Sciences Building, University Park, PA 16802 2024-T351 exhibits a strength-differential @ of 5.9%, while
1100 does not exhibit an appreciable strength-differential. While
. e ._.Wilson did not measure volume change, Spitzig and Richmond
asT?heea;\JlltiggrsCoirerﬁthlc);/rilt(i?ir(])t:]ﬁetshteh?3Eaar?(lj(t?-?fyeeugg nf1|c(e)f;1l Ell \?vsng'ryd, and found there to be no significant dilation; indicating that
isotropic/kinemgtic hardenind However. there has always: be ﬁ associated flow rule will not correctly predict plastic strain.
the qualification that these simplifications of plasticity work weI{ Is is also the case for frictional materials, where it is common

for “most metals” or “some metals.” It is noteworthy that while "° employ a nonassociated flow rule.
y y We have observed strength-differential in laboratory experi-

the author has devoted a section of his paper to Richmond's W%‘%nts using aged Inconel 718 precipitation strengthened nickel-

refuting the widespread use of the assumption of pressute- i .
- ; . se alloy ([2,3]), 6061-T6 aluminum and 6092/SiC/17.5-16
independent flow in metals, he did not reference the keystoB rticulate reinforced aluminum allpy{4]). The Mises yield cri-

work of Spitzig and RichmonflL], where they provide additional terion does not apply well to these materials either. Our work on

results for 1100 aluminum. This would have further reinforced h R . : .

- L : : . Ihconel 718([3]) indicates that a,-J; yield function, which we
pon. Spg and emond o 1160 b o s i s e o e e
strength-differential means a tension-compression asymmeféyfvz';cgﬂ%sﬂﬂm gllgggwtgse rlrl1noesst ggittg%tlg)roposed by Drudir
(e.g., compressive yield strength larger than tensile yield . Lo 2 X L .

AT : : Finally, while it is fairly obvious, it is worth pointing out that
strength, which is different from a Bauschinger effect. The yI(aldche Drucker-Prager yield criterion predicts more flow for the same

function that Spitzig and Richmond used can be written in ﬂ}%nsile stress than the Mises yield criterion simply due to the

forms presence of the positiig term. Thus, the finite element results of
f=al,+3J,—c Wilson for Mises and Drucker-Prager yield criteria are self-
consistent. It would be interesting to know the rangd ofor a
\/3_.]2 particular notch geometry.
f=al,+ -1

wherel, andJ, are the usual stress invariants ameka/c, a is

the pressure coefficient, and is the strength coefficient. The

strength-differential depends only on the parameter but References

pressure-dependence is affected by betand c. While a andc [1] Spitzig, W. A., and Richmond, O., 1984, “The Effect of Pressure on the Flow
were shown to be strain-dependeatwas not([1). In fact, a [2] gtnreés I?/If '\f_?st:l;:j/;ﬁtach taalllijz L‘é‘r’ef 537_: 6?1"999 “Yield of Inconel 718 b
=alc for alu.mmum was approximately three times that of iron- Axial-Torsional Loadihg.at."l'emperatur'es.ubyto 64éC,” J. Test. E2A, pp. g
based materials. 307-336.

Based on the tensile and compressive yield strengths reported] lyer, S. K., and Lissenden, C. J., 2002, “Viscoplastic Model Accounting for
by Wikson for 2024-T351 aluminum, presumably using the 0200 S L 5565 ors Gomprri Heed for i
offset strain definition; th.e yield function pe}ra_meters qan be Ca.l_[ Locus Con’str.ucltion for h’/IeféiIIic Alioys," submittez for publication.
culated and compared with results from Spitzig and Richmond ins prycker, D. C., 1949, “Relation of Experiments to Mathematical Theories of
Table 1. Plasticity,” ASME J. Appl. Mech. 16, pp. 349—357.

712 / Vol. 69, SEPTEMBER 2002 Copyright © 2002 by ASME Transactions of the ASME



Journal of
Applied

Mechanics

Erratum: “On Some Issues in Shakedown Analysis”
[ASME J. Appl. Mech., 2001, 68, pp. 799808]

G. Maier

In this paper, on page 800,=should be deleted from E@2.4).
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